Flow Past a Vortex

Consider a uniform stream, Uy, flowing in the x direction past a vortex of strength
K with the center at the origin. By superposition the combined stream function is

U =Ugorm T Vipex = U, rsin@ — Kinr

The velocity components of this flow are given by

\ =lﬂ=umc059 Vg = —

=18 =—Umsin9+E

oy
or r

Setting v, and v, =0, we find the stagnation pointat 8 = 90°,r=a =K/ U,
or (x,y)=1(0,a).

At this point the counterclockwise vortex velocity, K/r, exactly cancels the free

steam velocity, Ug. Figure 8.6 in the text shows a plot of the streamlines for this
flow.

An Infinite Row of Vortices

Consider an infinite row of vortices of equal strength K and equal spacing a as
shown in Fig. 8.7a. A single vortex, 1, has a stream function given by

W, = =K Int; and the total infinite row has a combined stream function of

Y =-xK 0flnri
i=1

This infinite sum can also be expressed as

1] :—% Kln% %oshz—;[y — oS 2%(%
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Fig. 8.7 Superposition of
vortices

(a) an infinite row of equal
strength vortices;

(b) the streamline pattern for part
a;

(c) vortex sheet, part a viewed
from afar.
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TheVortex Sheet

The flow pattern of Fig. 8.7b when viewed from a long distance will appear as the
uniform left and right flows shown in Fig. 8.7c. The vortices are so closely packed
together that they appear to be a continuous sheet. The strength of the vortex sheet
is given by

_2nK

Y a

Since, in general, the circulation is related to the strength, y, by d ' =y dx, the
strength, Yy, of a vortex sheet is equal to the circulation per unit length, d I /dx.
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Plane Flow Past Closed-Body Shapes

Various types of external flows over a closed-body can be constructed by
superimposing a uniform stream with sources, sinks, and vortices.

Key Point: The body shape will be closed only if the net source of the outflow
equals the net sink inflow. Two examples of this are presented below.

The Rankine Oval

A Rankine Oval is a cylindrical

shape which is long compared to
its height. It is formed by a —
source-sink pair aligned parallel to =
a uniform stream.

HITTE Sk

The individual flows used to
produce the final result and the

combined flow field are shown in P .
Fig. 8.9. The combined stream Y _ )
function is given by CE - TG
e -
L 2a ’ g
Y =U_y— mtan : y

X2 + yz _ az ﬂx“x\ —
- —~—
@ =U,_rsin0+m(6, -6,)

Fig. 8.9 The Rankine Oval

The oval shaped closed body is the streamline, Y = 0. Stagnation points occur at
the front and rear of the oval, X =+ L, y = 0. Points of maximum velocity and
minimum pressure occur at the shoulders, X =0, Y =+ h. Key geometric and
flow parameters of the Rankine Oval can be expressed as follows:
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Upe — 1 4 2m/(U, a)

U 1+h/a’

As the value of the parameter m/ (Uoc a) is increased from zero, the oval shape
increases in size and transforms from a flat plate to a circular cylinder at the
limiting case of m/ (Uo0 a) = 00,

Specific values of these parameters are presented in Table 8.1 for four different
values of the dimensionless vortex strength, K/ (U00 a).

Table8.1 Rankine-Oval Parameters

m/(U., a) h/a L/a L/h U, /U,
0.0 0.0 1.0 o 1.0
0.01 0.31 1.10 32.79 1.020
0.1 0.263 1.095 4.169 1.187
1.0 1.307 1.732 1.326 1.739
10.0 4.435 4.458 1.033 1.968
10.0 14.130 14.177 1.003 1.997
% % % 1.000 2.000

Flow Past a Circular Cylinder with Circulation

It is seen from Table 8.1 that as source strength m becomes large, the Rankine
Oval becomes a large circle, much greater in diameter than the source-sink spacing
2a. Viewed, from the scale of the cylinder, this is equivalent to a uniform stream
plus a doublet. To add circulation without changing the shape of the cylinder we
place a vortex at the doublet center. For these conditions the stream function is
given by

I - S R ¢
(IJ—UOOSHIQE' rE Klna

Typical resulting flows are shown in Fig. 8.10 for increasing values of non-
dimensional vortex strength K/U_ a.
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Fig. 8.10 Flow past a cylinder with circulation for values of
K/U_a of(a)0, (b) 1.0, (c) 2.0, and (d) 3.0

Again, the streamline ( = 0 is corresponds to the circle r=a. As the counter-
clockwise circulation [ = 2 7TK increases, velocities below the cylinder increase

and velocities above the cylinder decrease (could this be related to the path of a
curve ball?). In polar coordinates, the velocity components are given by

2
Vv, =1a—w=UmCOSQ§—a—2§
roe r

J . a0, K
Vg = —a—lf =-U, sm@@ +PE+T

For small K, two stagnation points appear on the surface at angles 8, or for which

K
2U_a

sin 95 =

Thus for K=0, 6, =0 and 180°. For K/U_a =1, 6, = 30and 150°. Figure
8.10c is the limiting case for which with K/U_a =2, 6, =90° and the two
stagnation points meet at the top of the cylinder.
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The Kutta-Joukowski Lift Theorem
The development in the text shows that from inviscid flow theory,

The lift per unit depth of any cylinder of any shape immersed in a
uniform stream equals to pU_ [ where [ is the total net circulation

contained within the body shape. The direction of the lift is 90° from
the stream direction, rotating opposite to the circulation.

This is the well known Kutta-Joukowski lift theorem.

For the cylindrical flows shown in Fig. 8.10 b to d, there is a downward force, or
negative lift, proportional to the free stream velocity and vortex strength. The
surface pressure distribution is given by

1 . .
P, =P, +§pUi(1 —4sin” 9 + 4 Bsin 6 —[32)
where =K/ (Uwa) and P is the free stream pressure. For a cylinder of

width b into the paper, the drag D is given by

D=- j"(PS ~P,,)cosObadb

The lift force L is normal to the free stream and is equal to the sum of the vertical
pressure forces (for inviscid flow) and is determined by

L =;"(P, -P,)sin@badp

Substituting Py - P, from the previous equation the lift is given by

L= —% pU2 % baf>"sin’0d6 = —pU,, (2 TK )b

or

=-pU, I

olr

VI -13



