The Uniform Probability Distribution

Bernd Schröder
Definition.

A continuous random variable is said to have uniform distribution on the interval $[A, B]$ if and only if its probability density function is $f(x; A, B) = \begin{cases} \frac{1}{B-A}; & \text{for } A \leq x \leq B, \\ 0; & \text{otherwise}. \end{cases}$

Example. RAND() is uniformly distributed on $[0, 1]$.

Bernd Schröder

Louisiana Tech University, College of Engineering and Science
Definition. A continuous random variable is said to have uniform distribution on the interval \([A, B]\) if and only if its probability density function is
Definition. A *continuous random variable* is said to have **uniform distribution** on the interval \([A, B]\) if and only if its **probability density function** is

\[
f(x; A, B) = \begin{cases}
\frac{1}{B-A}; & \text{for } A \leq x \leq B, \\
0; & \text{otherwise}.
\end{cases}
\]
Definition. A continuous random variable is said to have **uniform distribution** on the interval \([A, B]\) if and only if its probability density function is

\[f(x; A, B) = \begin{cases} \frac{1}{B-A}; & \text{for } A \leq x \leq B, \\ 0; & \text{otherwise.} \end{cases} \]
Definition. A continuous random variable is said to have uniform distribution on the interval \([A, B]\) if and only if its probability density function is

\[
f(x; A, B) = \begin{cases}
\frac{1}{B-A} & \text{for } A \leq x \leq B, \\
0 & \text{otherwise.}
\end{cases}
\]
Definition. A continuous random variable is said to have uniform distribution on the interval \([A, B]\) if and only if its probability density function is

\[
f(x; A, B) = \begin{cases}
\frac{1}{B-A}; & \text{for } A \leq x \leq B, \\
0; & \text{otherwise}.
\end{cases}
\]

Example.

\(\text{RAND}()\) is uniformly distributed on \([0, 1]\).
Definition. A continuous random variable is said to have uniform distribution on the interval \([A, B]\) if and only if its probability density function is

\[
f(x; A, B) = \begin{cases}
\frac{1}{B-A}; & \text{for } A \leq x \leq B, \\
0; & \text{otherwise}.
\end{cases}
\]

Example. RAND() is uniformly distributed on \([0, 1]\).
Example.

The random variable X is uniformly distributed on \([2, 5]\). Compute each of the following probabilities.

$$P(X \leq 3) = \frac{3 - 2}{5 - 2} = \frac{1}{3}$$
Example. *The random variable* X *is uniformly distributed on* $[2, 5]$. *Compute each of the following probabilities.*
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute each of the following probabilities.

$P(X \leq 3)$
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute each of the following probabilities.

$P(X \leq 3)$

Diagram:

2 |--------------------------|-------------------| 5

Example. The random variable X is uniformly distributed on $[2, 5]$. Compute each of the following probabilities.

$P(X \leq 3)$
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute each of the following probabilities.

$P(X \leq 3)$
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute each of the following probabilities.

$P(X \leq 3)$

![Diagram showing the uniform distribution on [2, 5] with a shaded area representing $P(X \leq 3)$]
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute each of the following probabilities.

$P(X \leq 3)$

$P(X \leq 3) = P(2 \leq X \leq 3)$
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute each of the following probabilities.

$P(X \leq 3)$

\[
P(X \leq 3) = P(2 \leq X \leq 3)
\]
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute each of the following probabilities.

$P(X \leq 3)$

\[P(X \leq 3) = P(2 \leq X \leq 3) = \frac{1}{3} \]
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute each of the following probabilities.
Example. The random variable X is uniformly distributed on [2, 5]. Compute each of the following probabilities.

$P(X \geq 4)$
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute each of the following probabilities.

$P(X \geq 4)$

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

The Uniform Probability Distribution
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute each of the following probabilities.

$P(X \geq 4)$
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute each of the following probabilities.

$P(X \geq 4)$
Example. *The random variable X is uniformly distributed on $[2, 5]$. Compute each of the following probabilities.*

$P(X \geq 4)$
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute each of the following probabilities.

$P(X \geq 4)$
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute each of the following probabilities.

$P(X \geq 4)$

\[
P(X \geq 4) = P(5 \geq X \geq 4) = \frac{5-4}{5-2} = \frac{1}{3}
\]
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute each of the following probabilities.

$P(X \geq 4)$

\[
P(X \geq 4) = P(X \geq 4)
\]
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute each of the following probabilities.

$P(X \geq 4)$

\[
P(X \geq 4) = P(5 \geq X \geq 4) = \frac{1}{3}
\]
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute each of the following probabilities.
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute each of the following probabilities:

$P(3.5 \leq X \leq 7)$
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute each of the following probabilities.

$P(3.5 \leq X \leq 7)$
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute each of the following probabilities.

$P(3.5 \leq X \leq 7)$

Diagram:

```
    2  3.5  5
```

Example. The random variable X is uniformly distributed on $[2, 5]$. Compute each of the following probabilities.

$P(3.5 \leq X \leq 7)$
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute each of the following probabilities.

$P(3.5 \leq X \leq 7)$

\[P(3.5 \leq X \leq 7) = P(3.5 \leq X \leq 5) = \frac{1}{2} \]
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute each of the following probabilities.

$P(3.5 \leq X \leq 7)$
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute each of the following probabilities.

$P(3.5 \leq X \leq 7)$

\[
P(3.5 \leq X \leq 7) = \frac{1}{2 - 3.5} = \frac{1}{0.5} = 2
\]
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute each of the following probabilities.

$P(3.5 \leq X \leq 7)$

$$P(3.5 \leq X \leq 7) = P(3.5 \leq X \leq 5)$$
Example. The random variable X is uniformly distributed on $[2,5]$. Compute each of the following probabilities.

$P(3.5 \leq X \leq 7)$

\[
P(3.5 \leq X \leq 7) = P(3.5 \leq X \leq 5) = \frac{1}{2}
\]
Example. *The random variable* X *is uniformly distributed on* $[2, 5]$.
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute the value x so that $P(X \geq x) = 0.7$.

$x = 5 - \frac{0.7}{3} = 2.9$. So $x = 5 - 2.9 = 2.1$.

Bernd Schröder
Louisiana Tech University, College of Engineering and Science
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute the value x so that $P(X \geq x) = 0.7$.

\[x = 5 - \frac{2}{3} = \frac{11}{3} = 3.6666\ldots \]
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute the value x so that $P(X \geq x) = 0.7$.

$$x = 2 \cdot \frac{1}{3} = 0.7 \cdot 3 = 2.1.$$ So $x = 5 - 2.1 = 2.9$.

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

The Uniform Probability Distribution
Example. The random variable X is uniformly distributed on $[2,5]$. Compute the value x so that $P(X \geq x) = 0.7$.

So $x = 5 - 2 \cdot 0.7 = 5 - 1.4 = 3.6$.

Uniform Distribution Examples

Bernd Schröder Louisiana Tech University, College of Engineering and Science

The Uniform Probability Distribution
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute the value x so that $P(X \geq x) = 0.7$.

![Diagram](image)
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute the value x so that $P(X \geq x) = 0.7$.

$$0.7 = \frac{0.7}{3} = \frac{2.1}{3}$$

So $x = 5 - 2.1 = 2.9$.
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute the value x so that $P(X \geq x) = 0.7$.

\begin{align*}
x &= \frac{0.7 \cdot 3}{5 - 2 - 0.7} \\
&= \frac{2.1}{2.3} \\
&= \boxed{2.9}
\end{align*}
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute the value x so that $P(X \geq x) = 0.7$.

\[
\begin{align*}
0.7 &= \frac{1}{3} \\
\end{align*}
\]
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute the value x so that $P(X \geq x) = 0.7$.

\[
\frac{0.7}{1/3} = 0.7 \cdot 3
\]
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute the value x so that $P(X \geq x) = 0.7$.

\[
\frac{0.7}{1/3} = 0.7 \cdot 3 = 2.1
\]
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute the value x so that $P(X \geq x) = 0.7$.

\[
\frac{0.7}{\frac{1}{3}} = 0.7 \cdot 3 = 2.1
\]

So $x = 5 - 2.1$
Example. The random variable X is uniformly distributed on $[2, 5]$. Compute the value x so that $P(X \geq x) = 0.7$.

\[
\frac{0.7}{1/3} = 0.7 \cdot 3 = 2.1 \\
\text{So } x = 5 - 2.1 = 2.9.
\]