Complex Numbers

Bernd Schröder
Introduction
Introduction

1. You probably have worked with numbers $a + ib$ so that $i^2 = -1$ before.
Introduction

1. You probably have worked with numbers $a + ib$ so that $i^2 = -1$ before.
2. We will formally construct entities that work like this.
Introduction

1. You probably have worked with numbers $a + ib$ so that $i^2 = -1$ before.

2. We will formally construct entities that work like this.

3. We will assume the real numbers “work like they always did”.

Bernd Schröder

Louisiana Tech University, College of Engineering and Science
Introduction

1. You probably have worked with numbers $a + ib$ so that $i^2 = -1$ before.
2. We will *formally* construct entities that work like this.
3. We will assume the real numbers “work like they always did”.
4. This is not a fully formal introduction, but it can serve to facilitate the transition to doing proofs.
Introduction

1. You probably have worked with numbers $a + ib$ so that $i^2 = -1$ before.
2. We will *formally* construct entities that work like this.
3. We will assume the real numbers “work like they always did”.
4. This is not a fully formal introduction, but it can serve to facilitate the transition to doing proofs.
5. For a formal introduction of the number systems, consider my class “Fundamentals of Mathematics.”
If You Like “That Abstract Stuff”
If You Like “That Abstract Stuff”
Definition.
Definition. *The complex numbers* \(\mathbb{C}\) are the set \(\mathbb{R}^2\)
Definition. The complex numbers \mathbb{C} are the set \mathbb{R}^2 (the x-y-plane)
Definition. The complex numbers \mathbb{C} are the set \mathbb{R}^2 (the x-y-plane) equipped with addition and multiplication defined as follows.
Definition. The complex numbers \mathbb{C} are the set \mathbb{R}^2 (the x-y-plane) equipped with addition and multiplication defined as follows. Let the complex numbers $(a, b), (c, d) \in \mathbb{C}$ be given.
Definition. *The complex numbers* \(\mathbb{C} \) are the set \(\mathbb{R}^2 \) (the x-y-plane) equipped with addition and multiplication defined as follows. Let the complex numbers \((a, b), (c, d) \in \mathbb{C}\) be given.

- \((a, b) + (c, d) := (a + c, b + d)\)
Definition. The complex numbers \mathbb{C} are the set \mathbb{R}^2 (the x-y-plane) equipped with addition and multiplication defined as follows. Let the complex numbers $(a, b), (c, d) \in \mathbb{C}$ be given.

- $(a, b) + (c, d) := (a + c, b + d)$
- $(a, b) \cdot (c, d) := (ac - bd, ad + bc)$.
Definition. The complex numbers \mathbb{C} are the set \mathbb{R}^2 (the x-y-plane) equipped with addition and multiplication defined as follows. Let the complex numbers $(a, b), (c, d) \in \mathbb{C}$ be given.

- $(a, b) + (c, d) := (a + c, b + d)$
- $(a, b) \cdot (c, d) := (ac - bd, ad + bc)$.
- $0 := (0_\mathbb{R}, 0_\mathbb{R})$
Definition. The complex numbers \(\mathbb{C} \) are the set \(\mathbb{R}^2 \) (the x-y-plane) equipped with addition and multiplication defined as follows. Let the complex numbers \((a, b), (c, d) \in \mathbb{C}\) be given.

- \((a, b) + (c, d) := (a + c, b + d)\)
- \((a, b) \cdot (c, d) := (ac - bd, ad + bc)\).
- \(0 := (0_{\mathbb{R}}, 0_{\mathbb{R}}), 1 := (1_{\mathbb{R}}, 0_{\mathbb{R}})\)
Definition. The complex numbers \mathbb{C} are the set \mathbb{R}^2 (the x-y-plane) equipped with addition and multiplication defined as follows. Let the complex numbers $(a, b), (c, d) \in \mathbb{C}$ be given.

- $(a, b) + (c, d) := (a + c, b + d)$
- $(a, b) \cdot (c, d) := (ac - bd, ad + bc)$.
- $0 := (0_R, 0_R)$, $1 := (1_R, 0_R)$
- $i := (0_R, 1_R)$.
Definition. The complex numbers \mathbb{C} are the set \mathbb{R}^2 (the x-y-plane) equipped with addition and multiplication defined as follows. Let the complex numbers $(a, b), (c, d) \in \mathbb{C}$ be given.

- $(a, b) + (c, d) := (a + c, b + d)$
- $(a, b) \cdot (c, d) := (ac - bd, ad + bc)$.
- $0 := (0_R, 0_R), 1 := (1_R, 0_R)$
- $i := (0_R, 1_R)$.

Complex numbers are also written in the form

$(a, b) = a \cdot 1 + b \cdot i = a + ib$.

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

Complex Numbers
Definition. The complex numbers \mathbb{C} are the set \mathbb{R}^2 (the x-y-plane) equipped with addition and multiplication defined as follows. Let the complex numbers $(a, b), (c, d) \in \mathbb{C}$ be given.

- $(a, b) + (c, d) := (a + c, b + d)$
- $(a, b) \cdot (c, d) := (ac - bd, ad + bc)$.
- $0 := (0_\mathbb{R}, 0_\mathbb{R})$, $1 := (1_\mathbb{R}, 0_\mathbb{R})$
- $i := (0_\mathbb{R}, 1_\mathbb{R})$.

Complex numbers are also written in the form $(a, b) = a \cdot 1 + b \cdot i = a + ib$.

For $z = a + ib \in \mathbb{C}$, the number a is also called the real part of z.
Definition. The complex numbers \(\mathbb{C} \) are the set \(\mathbb{R}^2 \) (the x-y-plane) equipped with addition and multiplication defined as follows. Let the complex numbers \((a, b), (c, d) \in \mathbb{C}\) be given.

- \((a, b) + (c, d) := (a + c, b + d)\)
- \((a, b) \cdot (c, d) := (ac - bd, ad + bc)\).
- \(0 := (0\mathbb{R}, 0\mathbb{R}), 1 := (1\mathbb{R}, 0\mathbb{R})\)
- \(i := (0\mathbb{R}, 1\mathbb{R})\).

Complex numbers are also written in the form
\((a, b) = a \cdot 1 + b \cdot i = a + ib\).

For \(z = a + ib \in \mathbb{C}\), the number \(a\) is also called the real part of \(z\), denoted \(\Re(z)\).
Definition. The complex numbers \mathbb{C} are the set \mathbb{R}^2 (the x-y-plane) equipped with addition and multiplication defined as follows. Let the complex numbers $(a,b), (c,d) \in \mathbb{C}$ be given.

- $(a,b) + (c,d) := (a + c, b + d)$
- $(a,b) \cdot (c,d) := (ac - bd, ad + bc)$.
- $0 := (0_\mathbb{R},0_\mathbb{R})$, $1 := (1_\mathbb{R},0_\mathbb{R})$
- $i := (0_\mathbb{R},1_\mathbb{R})$.

Complex numbers are also written in the form $(a,b) = a \cdot 1 + b \cdot i = a + ib$.

For $z = a + ib \in \mathbb{C}$, the number a is also called the **real part** of z, denoted $\Re(z)$.

The number b is also called the **imaginary part** of z.
Definition. The complex numbers \mathbb{C} are the set \mathbb{R}^2 (the x-y-plane) equipped with addition and multiplication defined as follows. Let the complex numbers $(a,b), (c,d) \in \mathbb{C}$ be given.

- $(a,b) + (c,d) := (a + c, b + d)$
- $(a,b) \cdot (c,d) := (ac - bd, ad + bc)$.
- $0 := (0_R, 0_R), 1 := (1_R, 0_R)$
- $i := (0_R, 1_R)$.

Complex numbers are also written in the form $(a,b) = a \cdot 1 + b \cdot i = a + ib$.

For $z = a + ib \in \mathbb{C}$, the number a is also called the real part of z, denoted $\Re(z)$.

The number b is also called the imaginary part of z, denoted $\Im(z)$.
Complex Numbers Visualized
Complex Numbers Visualized

Although the above notation is not mandatory, it saves us unnecessary adjustments if we try to consistently use it. Be prepared for exceptions, though.
Complex Numbers Visualized

Although the above notation is not mandatory, it saves us unnecessary adjustments if we try to consistently use it. Be prepared for exceptions, though.
What are Complex Numbers? Field Properties Absolute Value/Modulus The Complex Conjugate

Complex Numbers Visualized

\[z = x + iy \]

Although the above notation is not mandatory, it saves us unnecessary adjustments if we try to consistently use it. Be prepared for exceptions, though.
Complex Numbers Visualized

Although the above notation is not mandatory, it saves us unnecessary adjustments if we try to consistently use it. Be prepared for exceptions, though.
Complex Numbers Visualized

\[z = x + iy \]

Although the above notation is not mandatory, it saves us unnecessary adjustments if we try to consistently use it. Be prepared for exceptions, though.
Complex Numbers Visualized
What are Complex Numbers?

Field Properties

Absolute Value/Modulus

The Complex Conjugate

Complex Numbers Visualized

$z = x + iy$

Bernd Schröder

Louisiana Tech University, College of Engineering and Science
Complex Numbers Visualized

\[z = x + iy \]

Although the above notation is not mandatory, it saves us unnecessary adjustments if we try to consistently use it. Be prepared for exceptions, though.
Complex Numbers Visualized

$z = x + iy$

Although the above notation is not mandatory, it saves us unnecessary adjustments if we try to consistently use it. Be prepared for exceptions, though.
What are Complex Numbers?

Field Properties Absolute Value/Modulus The Complex Conjugate

Complex Numbers Visualized

\[z = x + iy \]

\[\Re(z) \]

\[\Im(z) \]

Although the above notation is not mandatory, it saves us unnecessary adjustments if we try to consistently use it. Be prepared for exceptions, though.

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

Complex Numbers
Complex Numbers

- \mathbb{R} (x)
- \mathbb{I} (y)

$z = x + iy$

Although the above notation is not mandatory, it saves us unnecessary adjustments if we try to consistently use it. Be prepared for exceptions, though.
Complex Numbers Visualized

Although the above notation is not mandatory, it saves us unnecessary adjustments if we try to consistently use it.
Although the above notation is not mandatory, it saves us unnecessary adjustments if we try to consistently use it. Be prepared for exceptions, though.
Theorem.
Theorem. The complex numbers \(\mathbb{C} \) with addition, multiplication, 0 and 1 as defined above are a field.
Theorem. The complex numbers \mathbb{C} with addition, multiplication, 0 and 1 as defined above are a field. That is, the following hold.
Theorem. The complex numbers \mathbb{C} with addition, multiplication, 0 and 1 as defined above are a field. That is, the following hold.

1. Addition is associative
Theorem. The complex numbers \mathbb{C} with addition, multiplication, 0 and 1 as defined above are a field. That is, the following hold.

1. **Addition is associative,** that is, for all $z_1, z_2, z_3 \in \mathbb{C}$ we have $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$.
Theorem. The complex numbers \mathbb{C} with addition, multiplication, 0 and 1 as defined above are a field. That is, the following hold.

1. **Addition is associative**, that is, for all $z_1, z_2, z_3 \in \mathbb{C}$ we have
 \[(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3).\]
2. **Addition is commutative**
Theorem. The complex numbers \(\mathbb{C} \) with addition, multiplication, 0 and 1 as defined above are a field. That is, the following hold.

1. **Addition is associative**, that is, for all \(z_1, z_2, z_3 \in \mathbb{C} \) we have
 \[
 (z_1 + z_2) + z_3 = z_1 + (z_2 + z_3).
 \]

2. **Addition is commutative**, that is, for all \(z_1, z_2 \in \mathbb{C} \) we have
 \[
 z_1 + z_2 = z_2 + z_1.
 \]
Theorem. The complex numbers \(\mathbb{C} \) with addition, multiplication, 0 and 1 as defined above are a field. That is, the following hold.

1. Addition is **associative**, that is, for all \(z_1, z_2, z_3 \in \mathbb{C} \) we have
 \[
 (z_1 + z_2) + z_3 = z_1 + (z_2 + z_3).
 \]

2. Addition is **commutative**, that is, for all \(z_1, z_2 \in \mathbb{C} \) we have
 \[
 z_1 + z_2 = z_2 + z_1.
 \]

3. There is a **neutral element** 0 for addition
Theorem. The complex numbers \mathbb{C} with addition, multiplication, 0 and 1 as defined above are a field. That is, the following hold.

1. *Addition is associative*, that is, for all $z_1, z_2, z_3 \in \mathbb{C}$ we have $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$.
2. *Addition is commutative*, that is, for all $z_1, z_2 \in \mathbb{C}$ we have $z_1 + z_2 = z_2 + z_1$.
3. *There is a neutral element* 0 for addition, that is, there is an element $0 \in \mathbb{C}$ so that for all $z \in \mathbb{C}$ we have $z + 0 = z$.
Theorem. The complex numbers \mathbb{C} with addition, multiplication, 0 and 1 as defined above are a field. That is, the following hold.

1. **Addition is associative**, that is, for all $z_1, z_2, z_3 \in \mathbb{C}$ we have
 $$(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3).$$
2. **Addition is commutative**, that is, for all $z_1, z_2 \in \mathbb{C}$ we have
 $$z_1 + z_2 = z_2 + z_1.$$
3. **There is a neutral element** 0 for addition, that is, there is an element 0 $\in \mathbb{C}$ so that for all $z \in \mathbb{C}$ we have $z + 0 = z$.
4. **For every element** $z \in \mathbb{C}$ there is an **additive inverse element** $(-z)$ so that $z + (-z) = 0$.
<table>
<thead>
<tr>
<th>What are Complex Numbers?</th>
<th>Field</th>
<th>Properties</th>
<th>Absolute Value/Modulus</th>
<th>The Complex Conjugate</th>
</tr>
</thead>
</table>

Complex Addition Visualized

The preceding properties should follow from the corresponding properties for the components.
Complex Addition Visualized

\[y = \Im(z) \]

\[x = \Re(z) \]

The preceding properties should follow from the corresponding properties for the components.
Complex Addition Visualized
What are Complex Numbers?

Field Properties Absolute Value/Modulus The Complex Conjugate

Complex Addition Visualized

\[y = \mathcal{I}(z) \]

\[x = \mathcal{R}(z) \]

The preceding properties should follow from the corresponding properties for the components.

Bernd Schröder
Louisiana Tech University, College of Engineering and Science

Complex Numbers
Complex Addition Visualized

\[y = \Im(z) \]

\[x = \Re(z) \]

The preceding properties should follow from the corresponding properties for the components.

Bernd Schröder
Louisiana Tech University, College of Engineering and Science

Complex Numbers
Complex Addition Visualized

\begin{align*}
y &= \mathcal{I}(z) \\
x &= \mathcal{R}(z)
\end{align*}

The preceding properties should follow from the corresponding properties for the components.

Bernd Schröder
Louisiana Tech University, College of Engineering and Science

Complex Numbers
Complex Addition Visualized

\[y = \Im(z) \]

\[z_1 \]

\[z_2 \]

The preceding properties should follow from the corresponding properties for the components.
Complex Addition Visualized
Complex Addition Visualized

The preceding properties should follow from the corresponding properties for the components.

Bernd Schröder
Louisiana Tech University, College of Engineering and Science
Complex Numbers
Complex Addition Visualized

\[x = \Re(z) \]

\[y = \Im(z) \]

The preceding properties should follow from the corresponding properties for the components.
Complex Addition Visualized

\[y = \Im(z) \]

\[x = \Re(z) \]

The preceding properties should follow from the corresponding properties for the components.

Bernd Schröder
Louisiana Tech University, College of Engineering and Science

Complex Numbers
What are Complex Numbers?

Field Properties Absolute Value/Modulus The Complex Conjugate

Complex Addition Visualized

\[z_1 + z_2 = (\Re(z_1) + \Re(z_2), \Im(z_1) + \Im(z_2)) \]

The preceding properties should follow from the corresponding properties for the components.

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

Complex Numbers
Complex Addition Visualized

$y = \Im(z)$

$y = \Im(z)$

$x = \Re(z)$

The preceding properties should follow from the corresponding properties for the components.
Complex Addition Visualized

The preceding properties should follow from the corresponding properties for the components.
5. Multiplication is **associative**
5. Multiplication is **associative**, that is, for all \(z_1, z_2, z_3 \in \mathbb{C} \) we have
\[
(z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3).
\]
5. Multiplication is **associative**, that is, for all $z_1, z_2, z_3 \in \mathbb{C}$ we have
\[(z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3)\].

6. Multiplication is **commutative**
5. Multiplication is **associative**, that is, for all $z_1, z_2, z_3 \in \mathbb{C}$ we have \((z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3)\).

6. Multiplication is **commutative**, that is, for all $z_1, z_2 \in \mathbb{C}$ we have $z_1 \cdot z_2 = z_2 \cdot z_1$.
5. Multiplication is **associative**, that is, for all \(z_1, z_2, z_3 \in \mathbb{C} \) we have
\[
(z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3).
\]

6. Multiplication is **commutative**, that is, for all \(z_1, z_2 \in \mathbb{C} \) we have
\[
z_1 \cdot z_2 = z_2 \cdot z_1.
\]

7. There is a **neutral element** \(1 \neq 0 \) for multiplication
5. Multiplication is **associative**, that is, for all $z_1, z_2, z_3 \in \mathbb{C}$ we have
\[(z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3).\]

6. Multiplication is **commutative**, that is, for all $z_1, z_2 \in \mathbb{C}$ we have
\[z_1 \cdot z_2 = z_2 \cdot z_1.\]

7. There is a **neutral element** $1 \neq 0$ for multiplication, that is, there is an element $1 \in \mathbb{C} \setminus \{0\}$ so that for all $z \in \mathbb{C}$ we have $1 \cdot z = z$.
5. Multiplication is **associative**, that is, for all \(z_1, z_2, z_3 \in \mathbb{C} \) we have
\[
(z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3).
\]

6. Multiplication is **commutative**, that is, for all \(z_1, z_2 \in \mathbb{C} \) we have
\[
z_1 \cdot z_2 = z_2 \cdot z_1.
\]

7. There is a **neutral element** \(1 \neq 0 \) for multiplication, that is, there is an element \(1 \in \mathbb{C} \setminus \{0\} \) so that for all \(z \in \mathbb{C} \) we have \(1 \cdot z = z \).

8. For every element \(z \in \mathbb{C} \setminus \{0\} \) there is a **multiplicative inverse** element \(z^{-1} \) so that \(z \cdot z^{-1} = 1 \).
5. Multiplication is **associative**, that is, for all \(z_1, z_2, z_3 \in \mathbb{C} \) we have \((z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3)\).

6. Multiplication is **commutative**, that is, for all \(z_1, z_2 \in \mathbb{C} \) we have \(z_1 \cdot z_2 = z_2 \cdot z_1 \).

7. There is a **neutral element** \(1 \neq 0 \) for multiplication, that is, there is an element \(1 \in \mathbb{C} \setminus \{0\} \) so that for all \(z \in \mathbb{C} \) we have \(1 \cdot z = z \).

8. For every element \(z \in \mathbb{C} \setminus \{0\} \) there is a **multiplicative inverse** element \(z^{-1} \) so that \(z \cdot z^{-1} = 1 \).

9. Multiplication is (left) **distributive** over addition.
5. Multiplication is **associative**, that is, for all \(z_1, z_2, z_3 \in \mathbb{C} \) we have
\[
(z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3).
\]

6. Multiplication is **commutative**, that is, for all \(z_1, z_2 \in \mathbb{C} \) we have
\[
z_1 \cdot z_2 = z_2 \cdot z_1.
\]

7. There is a **neutral element** \(1 \neq 0 \) for multiplication, that is, there is an element \(1 \in \mathbb{C} \setminus \{0\} \) so that for all \(z \in \mathbb{C} \) we have \(1 \cdot z = z \).

8. For every element \(z \in \mathbb{C} \setminus \{0\} \) there is a **multiplicative inverse** element \(z^{-1} \) so that \(z \cdot z^{-1} = 1 \).

9. Multiplication is **(left) distributive** over addition, that is, for all \(z_1, z_2, z_3 \in \mathbb{C} \) we have \(z_1 \cdot (z_2 + z_3) = z_1 \cdot z_2 + z_1 \cdot z_3 \).
Proof.
Proof. Good exercise.
Proof. Good exercise. We will prove some of the properties, but not all of them.
Proof. Good exercise. We will prove some of the properties, but not all of them. Throughout, let $z = x + iy = (x, y)$.
Proof. Good exercise. We will prove some of the properties, but not all of them. Throughout, let $z = x + iy = (x, y)$, $z_1 = x_1 + iy_1 = (x_1, y_1)$.
Proof. Good exercise. We will prove some of the properties, but not all of them. Throughout, let $z = x + iy = (x, y)$, $z_1 = x_1 + iy_1 = (x_1, y_1)$ and $z_2 = x_2 + iy_2 = (x_2, y_2)$.
Proof. Good exercise. We will prove some of the properties, but not all of them. Throughout, let $z = x + iy = (x, y)$, $z_1 = x_1 + iy_1 = (x_1, y_1)$ and $z_2 = x_2 + iy_2 = (x_2, y_2)$.

Additive inverses (number 4):
Proof. Good exercise. We will prove some of the properties, but not all of them. Throughout, let $z = x + iy = (x, y)$, $z_1 = x_1 + iy_1 = (x_1, y_1)$ and $z_2 = x_2 + iy_2 = (x_2, y_2)$.

Additive inverses (number 4): The additive inverse of $z = x + iy = (x, y)$
Proof. Good exercise. We will prove some of the properties, but not all of them. Throughout, let $z = x + iy = (x, y)$, $z_1 = x_1 + iy_1 = (x_1, y_1)$ and $z_2 = x_2 + iy_2 = (x_2, y_2)$.

Additive inverses (number 4): The additive inverse of $z = x + iy = (x, y)$ is $-z := (-x) + (-y)i = (-x, -y)$
Proof. Good exercise. We will prove some of the properties, but not all of them. Throughout, let $z = x + iy = (x, y)$, $z_1 = x_1 + iy_1 = (x_1, y_1)$ and $z_2 = x_2 + iy_2 = (x_2, y_2)$.

Additive inverses (number 4): The additive inverse of $z = x + iy = (x, y)$ is $-z := (-x) + (-y)i = (-x, -y)$ because
Proof. Good exercise. We will prove some of the properties, but not all of them. Throughout, let \(z = x + iy = (x, y) \), \(z_1 = x_1 + iy_1 = (x_1, y_1) \) and \(z_2 = x_2 + iy_2 = (x_2, y_2) \).

Additive inverses (number 4): The additive inverse of \(z = x + iy = (x, y) \) is \(-z := (-x) + (-y)i = (-x, -y)\) because

\[
z + (-z)
\]
Proof. Good exercise. We will prove some of the properties, but not all of them. Throughout, let \(z = x + iy = (x, y) \), \(z_1 = x_1 + iy_1 = (x_1, y_1) \) and \(z_2 = x_2 + iy_2 = (x_2, y_2) \).

Additive inverses (number 4): The additive inverse of \(z = x + iy = (x, y) \) is \(-z := (-x) + (-y)i = (-x, -y) \) because

\[
z + (-z) = (x, y) + (-x, -y)
\]
Proof. Good exercise. We will prove some of the properties, but not all of them. Throughout, let $z = x + iy = (x, y)$, $z_1 = x_1 + iy_1 = (x_1, y_1)$ and $z_2 = x_2 + iy_2 = (x_2, y_2)$.

Additive inverses (number 4): The additive inverse of $z = x + iy = (x, y)$ is $-z := (-x) + (-y)i = (-x, -y)$ because

$$z + (-z) = (x, y) + (-x, -y) = (x + (-x), y + (-y))$$
Proof. Good exercise. We will prove some of the properties, but not all of them. Throughout, let $z = x + iy = (x, y)$, $z_1 = x_1 + iy_1 = (x_1, y_1)$ and $z_2 = x_2 + iy_2 = (x_2, y_2)$.

Additive inverses (number 4): The additive inverse of $z = x + iy = (x, y)$ is $-z := (-x) + (-y)i = (-x, -y)$ because

$$z + (-z) = (x, y) + (-x, -y) = (x + (-x), y + (-y)) = (0, 0)$$
Proof. Good exercise. We will prove some of the properties, but not all of them. Throughout, let \(z = x + iy = (x, y) \), \(z_1 = x_1 + iy_1 = (x_1, y_1) \) and \(z_2 = x_2 + iy_2 = (x_2, y_2) \).

Additive inverses (number 4): The additive inverse of \(z = x + iy = (x, y) \) is \(-z := (-x) + (-y)i = (-x, -y)\) because

\[
\begin{align*}
 z + (-z) &= (x, y) + (-x, -y) \\
 &= (x + (-x), y + (-y)) \\
 &= (0, 0) = 0
\end{align*}
\]
Proof. Good exercise. We will prove some of the properties, but not all of them. Throughout, let $z = x + iy = (x, y)$, $z_1 = x_1 + iy_1 = (x_1, y_1)$ and $z_2 = x_2 + iy_2 = (x_2, y_2)$.

Additive inverses (number 4): The additive inverse of $z = x + iy = (x, y)$ is $-z := (-x) + (-y)i = (-x, -y)$ because

$$z + (-z) = (x, y) + (-x, -y) = (x + (-x), y + (-y)) = (0, 0) = 0$$

So “the usual formula” for the additive inverse
Proof. Good exercise. We will prove some of the properties, but not all of them. Throughout, let $z = x + iy = (x, y)$, $z_1 = x_1 + iy_1 = (x_1, y_1)$ and $z_2 = x_2 + iy_2 = (x_2, y_2)$.

Additive inverses (number 4): The additive inverse of $z = x + iy = (x, y)$ is $-z := (-x) + (-y)i = (-x, -y)$ because

$$z + (-z) = (x, y) + (-x, -y) = (x + (-x), y + (-y)) = (0, 0) = 0$$

So “the usual formula” for the additive inverse (“the negative”)
Proof. Good exercise. We will prove some of the properties, but not all of them. Throughout, let $z = x + iy = (x, y)$, $z_1 = x_1 + iy_1 = (x_1, y_1)$ and $z_2 = x_2 + iy_2 = (x_2, y_2)$.

Additive inverses (number 4): The additive inverse of $z = x + iy = (x, y)$ is $-z := (-x) + (-y)i = (-x, -y)$ because

$$z + (-z) = (x, y) + (-x, -y) = (x + (-x), y + (-y)) = (0, 0) = 0$$

So “the usual formula” for the additive inverse (“the negative”) works because it gives us an object with the right properties.
Proof (cont.).
Proof (cont.).

Commutativity of multiplication (number 6):
Proof (cont.).

Commutativity of multiplication (number 6):

\[z_1 z_2 \]
Proof (cont.).
Commutativity of multiplication (number 6):

\[z_1 z_2 = (x_1, y_1) (x_2, y_2) \]
Proof (cont.).

Commutativity of multiplication (number 6):

\[z_1 z_2 = (x_1, y_1)(x_2, y_2) = (x_1 x_2 - y_1 y_2, x_1 y_2 + y_1 x_2) \]
Proof (cont.).

Commutativity of multiplication (number 6):

\[z_1 z_2 = (x_1, y_1)(x_2, y_2) = (x_1 x_2 - y_1 y_2, x_1 y_2 + y_1 x_2) \]

\[= (x_2 x_1 - y_2 y_1, x_2 y_1 + y_2 x_1) \]
Proof (cont.).

Commutativity of multiplication (number 6):

\[z_1 z_2 = (x_1, y_1)(x_2, y_2) = (x_1 x_2 - y_1 y_2, x_1 y_2 + y_1 x_2) \]
\[= (x_2 x_1 - y_2 y_1, x_2 y_1 + y_2 x_1) = (x_2, y_2)(x_1, y_1) \]
Proof (cont.).

Commutativity of multiplication (number 6):

\[z_1 z_2 = (x_1, y_1) (x_2, y_2) = (x_1 x_2 - y_1 y_2, x_1 y_2 + y_1 x_2) \]
\[= (x_2 x_1 - y_2 y_1, x_2 y_1 + y_2 x_1) = (x_2, y_2) (x_1, y_1) \]
\[= z_2 z_1 \]
Proof (cont.).

Commutativity of multiplication (number 6):

\[z_1 z_2 = (x_1, y_1)(x_2, y_2) = (x_1 x_2 - y_1 y_2, x_1 y_2 + y_1 x_2) \]
\[= (x_2 x_1 - y_2 y_1, x_2 y_1 + y_2 x_1) = (x_2, y_2)(x_1, y_1) \]
\[= z_2 z_1 \]

Multiplicative inverse (number 8):
Proof (cont.).

Commutativity of multiplication (number 6):

\[
\begin{align*}
z_1z_2 &= (x_1, y_1)(x_2, y_2) = (x_1x_2 - y_1y_2, x_1y_2 + y_1x_2) \\
&= (x_2x_1 - y_2y_1, x_2y_1 + y_2x_1) = (x_2, y_2)(x_1, y_1) \\
&= z_2z_1
\end{align*}
\]

Multiplicative inverse (number 8): \(z^{-1} = \left(\frac{x}{x^2 + y^2}, -\frac{y}{x^2 + y^2}\right)\).
Proof (cont.).

Commutativity of multiplication (number 6):

\[z_1 z_2 = (x_1, y_1)(x_2, y_2) = (x_1 x_2 - y_1 y_2, x_1 y_2 + y_1 x_2) \]
\[= (x_2 x_1 - y_2 y_1, x_2 y_1 + y_2 x_1) = (x_2, y_2)(x_1, y_1) \]
\[= z_2 z_1 \]

Multiplicative inverse (number 8): \[z^{-1} = \left(\frac{x}{x^2 + y^2}, -\frac{y}{x^2 + y^2} \right). \] Try it out!
Proof (cont.).

Commutativity of multiplication (number 6):

\[z_1 z_2 = (x_1, y_1)(x_2, y_2) = (x_1 x_2 - y_1 y_2, x_1 y_2 + y_1 x_2) \]
\[= (x_2 x_1 - y_2 y_1, x_2 y_1 + y_2 x_1) = (x_2, y_2)(x_1, y_1) \]
\[= z_2 z_1 \]

Multiplicative inverse (number 8): \(z^{-1} = \left(\frac{x}{x^2 + y^2}, -\frac{y}{x^2 + y^2} \right) \). Try it out!
Example.

\[
(3 + 5i) - 1 = 3 - 3\frac{1}{3} - i \frac{5}{3}
\]

(remember how computation was good for the soul?)
Example. Find the multiplicative inverse of $3 + 5i$.

```math
(3 + 5i)^{-1} = \frac{3}{34} - \frac{5}{34}i
```

(remember how computation was good for the soul?)

Definition.

\[
\begin{align*}
\text{If } z_1, z_2 & \in \mathbb{C}, \\
\text{then } z_1 - z_2 : & = z_1 + (-z_2), \\
\text{and } z_1 \cdot z_2 : & = z_1 \cdot z_2^{-1}.
\end{align*}
\]
Example. *Find the multiplicative inverse of $3 + 5i$.*

$$(3 + 5i)^{-1}$$
Example. *Find the multiplicative inverse of* $3 + 5i$.

$$(3 + 5i)^{-1} = \frac{3}{34} - i \frac{5}{34}$$
Example. *Find the multiplicative inverse of $3 + 5i$.*

$$(3 + 5i)^{-1} = \frac{3}{34} - i \frac{5}{34}$$

(Remember how computation was good for the soul?)
Example. Find the multiplicative inverse of $3 + 5i$.

$$(3 + 5i)^{-1} = \frac{3}{34} - i\frac{5}{34}$$

(Remember how computation was good for the soul?)

Definition.
Example. *Find the multiplicative inverse of* $3 + 5i$.

$$(3 + 5i)^{-1} = \frac{3}{34} - i\frac{5}{34}$$

(Remember how computation was good for the soul?)

Definition.

$z_1 - z_2$
Example. *Find the multiplicative inverse of* \(3 + 5i\).

\[
(3 + 5i)^{-1} = \frac{3}{34} - i\frac{5}{34}
\]

(Remember how computation was good for the soul?)

Definition.

\[z_1 - z_2 := z_1 + (-z_2)\]
Example. Find the multiplicative inverse of $3 + 5i$.

$$(3 + 5i)^{-1} = \frac{3}{34} - i\frac{5}{34}$$

(Remember how computation was good for the soul?)

Definition.

$z_1 - z_2 := z_1 + (-z_2)$

$\frac{z_1}{z_2} := z_1z_2^{-1}$
Example.

\[\frac{2 - 3i}{5 + 4i} = \left(2 - 3i\right) \left(5 + 4i\right) \]

\[= 2 \cdot 5 + 2 \cdot 4i - 3i \cdot 5 - 3i \cdot 4i \]

\[= 10 + 8i - 15i - 12i^2 \]

\[= 10 - 23i + 12 \]

\[= 22 - 23i \]
Example. Simplify the quotient \[\frac{2 - 3i}{5 + 4i} \].
Example. Simplify the quotient \(\frac{2 - 3i}{5 + 4i} \).

\[
\frac{2 - 3i}{5 + 4i} = \left(\frac{2 - 3i}{5 + 4i} \right) \left(\frac{5 - 4i}{5 - 4i} \right) = \frac{(2 - 3i)(5 - 4i)}{5^2 + 4^2} = \frac{10 - 12i - 15i + 12i^2}{25 + 16} = \frac{-2 - 23i}{41}
\]
Example. *Simplify the quotient* \(\frac{2 - 3i}{5 + 4i} \).

\[
\frac{2 - 3i}{5 + 4i} = (2 - 3i)(5 + 4i)^{-1}
\]
Example. Simplify the quotient $\frac{2 - 3i}{5 + 4i}$.

$$\frac{2 - 3i}{5 + 4i} = (2 - 3i)(5 + 4i)^{-1} = (2 - 3i) \left(\frac{5}{41} - \frac{4}{41}i \right)$$
Example. *Simplify the quotient* $\frac{2-3i}{5+4i}$.

$$\frac{2-3i}{5+4i} = (2-3i)(5+4i)^{-1} = (2-3i) \left(\frac{5}{41} - \frac{4}{41}i \right)$$

$$= \frac{10}{41}$$
Example. Simplify the quotient $\frac{2 - 3i}{5 + 4i}$.

$$\frac{2 - 3i}{5 + 4i} = (2 - 3i)(5 + 4i)^{-1} = (2 - 3i) \left(\frac{5}{41} - \frac{4}{41}i\right)$$

$$= \frac{10}{41} - \frac{12}{41}$$
Example. Simplify the quotient \(\frac{2 - 3i}{5 + 4i} \).

\[
\frac{2 - 3i}{5 + 4i} = (2 - 3i)(5 + 4i)^{-1} = (2 - 3i) \left(\frac{5}{41} - \frac{4}{41}i \right)
\]
\[
= \frac{10}{41} - \frac{12}{41} + \left(-\frac{8}{41} - \frac{15}{41} \right)i
\]
Example. *Simplify the quotient* $\frac{2 - 3i}{5 + 4i}$.

\[
\frac{2 - 3i}{5 + 4i} = (2 - 3i)(5 + 4i)^{-1} = (2 - 3i) \left(\frac{5}{41} - \frac{4}{41}i \right)
\]
\[
= \frac{10}{41} - \frac{12}{41} + \left(-\frac{8}{41} - \frac{15}{41} \right)i
\]
\[
= -\frac{2}{41} - \frac{23}{41}i
\]
Theorem.
Theorem. $i^2 = -1$.
Theorem. $i^2 = -1$.

Proof.
Theorem. \(i^2 = -1 \).

Proof. \(i^2 \)
Theorem. $i^2 = -1$.

Proof. $i^2 = (0 + 1i) \cdot (0 + 1i)$
Theorem. $i^2 = -1$.

Proof. $i^2 = (0 + 1i) \cdot (0 + 1i) = (0 \cdot 0 - 1 \cdot 1) + (0 \cdot 1 + 1 \cdot 0)i$
Theorem. $i^2 = -1$.

Proof. $i^2 = (0 + 1i) \cdot (0 + 1i) = (0 \cdot 0 - 1 \cdot 1) + (0 \cdot 1 + 1 \cdot 0)i = -1$.
Theorem. $i^2 = -1$.

Proof. $i^2 = (0 + 1i) \cdot (0 + 1i) = (0 \cdot 0 - 1 \cdot 1) + (0 \cdot 1 + 1 \cdot 0)i = -1$. □
Proposition.

<table>
<thead>
<tr>
<th>What are Complex Numbers?</th>
<th>Field</th>
<th>Properties</th>
<th>Absolute Value/Modulus</th>
<th>The Complex Conjugate</th>
</tr>
</thead>
</table>

Proof 1.

\[
z \cdot 0 = (x, y) \cdot (0, 0) = (x \cdot 0 - y \cdot 0, y \cdot 0 + x \cdot 0) = (0, 0) = 0.
\]

Proof 2.

Note that

\[
z = z + 0 z + (-0 z).
\]

Now

\[
0 = z + (-z).
\]

Proof 2 also applies in more abstract settings, so, although it is longer, it actually is preferred.

Idea:

Do you want to prove that anything times zero is zero in many abstract structures or do you want to prove once that it follows from their properties?
Proposition. Let $z \in \mathbb{C}$.
Proposition. Let $z \in \mathbb{C}$. Then $0 \cdot z = z \cdot 0 = 0$.
Proposition. Let \(z \in \mathbb{C} \). Then \(0 \cdot z = z \cdot 0 = 0 \).

Proof 1.
Proposition. Let $z \in \mathbb{C}$. Then $0 \cdot z = z \cdot 0 = 0$.

Proof 1.

$$z \cdot 0$$
Proposition. Let \(z \in \mathbb{C} \). Then \(0 \cdot z = z \cdot 0 = 0 \).

Proof 1.

\[
z \cdot 0 = (x, y) \cdot (0, 0)
\]
Proposition. Let \(z \in \mathbb{C} \). Then \(0 \cdot z = z \cdot 0 = 0 \).

Proof 1.

\[
z \cdot 0 = (x, y) \cdot (0, 0) = (x0 - y0, y0 + x0)
\]
Proposition. Let $z \in \mathbb{C}$. Then $0 \cdot z = z \cdot 0 = 0$.

Proof 1.

\[
z \cdot 0 = (x, y) \cdot (0, 0) = (x0 - y0, y0 + x0)
\]

\[
= (0, 0)
\]
Proposition. Let \(z \in \mathbb{C} \). Then \(0 \cdot z = z \cdot 0 = 0 \).

Proof 1.

\[
z \cdot 0 = (x, y) \cdot (0, 0) = (x0 - y0, y0 + x0) = (0, 0) = 0
\]

Proof 2 also applies in more abstract settings, so, although it is longer, it actually is preferred.
Proposition. Let $z \in \mathbb{C}$. Then $0 \cdot z = z \cdot 0 = 0$.

Proof 1.

\[
z \cdot 0 = (x, y) \cdot (0, 0) = (x0 - y0, y0 + x0) = (0, 0) = 0
\]

Proof 2.
Proposition. Let \(z \in \mathbb{C} \). Then \(0 \cdot z = z \cdot 0 = 0 \).

Proof 1.

\[
z \cdot 0 = (x, y) \cdot (0, 0) = (x0 - y0, y0 + x0) \\
= (0, 0) = 0
\]

Proof 2. Note that \(0z + 0z \).
Proposition. Let $z \in \mathbb{C}$. Then $0 \cdot z = z \cdot 0 = 0$.

Proof 1.

\[z \cdot 0 = (x, y) \cdot (0, 0) = (x0 - y0, y0 + x0) = (0, 0) = 0 \]

Proof 2. Note that $0z + 0z = (0 + 0)z$
Proposition. Let $z \in \mathbb{C}$. Then $0 \cdot z = z \cdot 0 = 0$.

Proof 1.

\[
z \cdot 0 = (x, y) \cdot (0, 0) = (x0 - y0, y0 + x0)
\]

\[
= (0, 0) = 0
\]

Proof 2. Note that $0z + 0z = (0 + 0)z = 0z$.
Proposition. Let \(z \in \mathbb{C} \). Then \(0 \cdot z = z \cdot 0 = 0 \).

Proof 1.

\[
z \cdot 0 = (x, y) \cdot (0, 0) = (x0 - y0, y0 + x0)
= (0, 0) = 0
\]

Proof 2. Note that \(0z + 0z = (0 + 0)z = 0z \). Now

\[0\]
Proposition. Let $z \in \mathbb{C}$. Then $0 \cdot z = z \cdot 0 = 0$.

Proof 1.

$$z \cdot 0 = (x, y) \cdot (0, 0) = (0 - y0, y0 + x0)$$
$$= (0, 0) = 0$$

Proof 2. Note that $0z + 0z = (0 + 0)z = 0z$. Now

$$0 = 0z + (-0z)$$
Proposition. Let $z \in \mathbb{C}$. Then $0 \cdot z = z \cdot 0 = 0$.

Proof 1.

\[
\begin{align*}
 z \cdot 0 &= (x, y) \cdot (0, 0) = (x0 - y0, y0 + x0) \\
 &= (0, 0) = 0
\end{align*}
\]

Proof 2. Note that $0z + 0z = (0 + 0)z = 0z$. Now

\[
0 = 0z + (-0z) = (0z + 0z) + (-0z)
\]
Proposition. Let \(z \in \mathbb{C} \). Then \(0 \cdot z = z \cdot 0 = 0 \).

Proof 1.

\[
z \cdot 0 = (x, y) \cdot (0, 0) = (x0 - y0, y0 + x0) \\
= (0, 0) = 0
\]

Proof 2. Note that \(0z + 0z = (0 + 0)z = 0z \). Now

\[
0 = 0z + (-0z) = (0z + 0z) + (-0z) \\
= 0z + (0z + (-0z))
\]
Proposition. Let \(z \in \mathbb{C} \). Then \(0 \cdot z = z \cdot 0 = 0 \).

Proof 1.

\[
z \cdot 0 = (x, y) \cdot (0, 0) = (x0 - y0, y0 + x0)
\]
\[
= (0, 0) = 0
\]

Proof 2. Note that \(0z + 0z = (0 + 0)z = 0z \). Now

\[
0 = 0z + (-0z) = (0z + 0z) + (-0z)
\]
\[
= 0z + (0z + (-0z)) = 0z + 0
\]
Proposition. Let $z \in \mathbb{C}$. Then $0 \cdot z = z \cdot 0 = 0$.

Proof 1.

\[z \cdot 0 = (x, y) \cdot (0, 0) = (x0 - y0, y0 + x0) \]
\[= (0, 0) = 0 \]

Proof 2. Note that $0z + 0z = (0 + 0)z = 0z$. Now

\[0 = 0z + (-0z) = (0z + 0z) + (-0z) \]
\[= 0z + (0z + (-0z)) = 0z + 0 = 0z \]
Proposition. Let $z \in \mathbb{C}$. Then $0 \cdot z = z \cdot 0 = 0$.

Proof 1.

$$z \cdot 0 = (x, y) \cdot (0, 0) = (x0 - y0, y0 + x0)$$
$$= (0, 0) = 0$$

Proof 2. Note that $0z + 0z = (0 + 0)z = 0z$. Now

$$0 = 0z + (-0z) = (0z + 0z) + (-0z)$$
$$= 0z + (0z + (-0z)) = 0z + 0 = 0z = z0.$$
Proposition. Let \(z \in \mathbb{C} \). Then \(0 \cdot z = z \cdot 0 = 0 \).

Proof 1.

\[
z \cdot 0 = (x, y) \cdot (0, 0) = (x0 - y0, y0 + x0) = (0, 0) = 0
\]

Proof 2. Note that \(0z + 0z = (0 + 0)z = 0z \). Now

\[
0 = 0z + (-0z) = (0z + 0z) + (-0z) = 0z + (0z + (-0z)) = 0z + 0 = 0z = z0.
\]
Proposition. Let $z \in \mathbb{C}$. Then $0 \cdot z = z \cdot 0 = 0$.

Proof 1.

$$z \cdot 0 = (x, y) \cdot (0, 0) = (x0 - y0, y0 + x0) = (0, 0) = 0$$

Proof 2. Note that $0z + 0z = (0 + 0)z = 0z$. Now

$$0 = 0z + (-0z) = (0z + 0z) + (-0z) = 0z + 0 = 0z = z0.$$

Proof 2 also applies in more abstract settings, so, although it is longer, it actually is preferred.
Proposition. Let \(z \in \mathbb{C} \). Then \(0 \cdot z = z \cdot 0 = 0 \).

Proof 1.

\[
z \cdot 0 = (x, y) \cdot (0, 0) = (x0 - y0, y0 + x0)
= (0, 0) = 0
\]

Proof 2. Note that \(0z + 0z = (0 + 0)z = 0z \). Now

\[
0 = 0z + (-0z) = (0z + 0z) + (-0z)
= 0z + (0z + (-0z)) = 0z + 0 = 0z = z0.
\]

Proof 2 also applies in more abstract settings, so, although it is longer, it actually is preferred. Idea:
Proposition. Let $z \in \mathbb{C}$. Then $0 \cdot z = z \cdot 0 = 0$.

Proof 1.

$$z \cdot 0 = (x, y) \cdot (0, 0) = (x0 - y0, y0 + x0) = (0, 0) = 0$$

Proof 2. Note that $0z + 0z = (0 + 0)z = 0z$. Now

$$0 = 0z + (-0z) = (0z + 0z) + (-0z) = 0z + (0z + (-0z)) = 0z + 0 = 0z = z0.$$

Proof 2 also applies in more abstract settings, so, although it is longer, it actually is preferred. Idea: Do you want to prove that anything times zero is zero in many abstract structures or do you want to prove once that it follows from their properties?
<table>
<thead>
<tr>
<th>What are Complex Numbers?</th>
<th>Field</th>
<th>Properties</th>
<th>Absolute Value/Modulus</th>
<th>The Complex Conjugate</th>
</tr>
</thead>
</table>

Theorem.
Theorem. Let $z_1, z_2 \in \mathbb{C}$.
Theorem. Let $z_1, z_2 \in \mathbb{C}$. Then $z_1 z_2 = 0$ implies $z_1 = 0$ or $z_2 = 0$.
Theorem. Let \(z_1, z_2 \in \mathbb{C} \). Then \(z_1 z_2 = 0 \) implies \(z_1 = 0 \) or \(z_2 = 0 \).

Proof 1.
Theorem. Let $z_1, z_2 \in \mathbb{C}$. Then $z_1 z_2 = 0$ implies $z_1 = 0$ or $z_2 = 0$.

Proof 1. Let $z_1, z_2 \in \mathbb{C}$ with $z_1 z_2 = 0$.
Theorem. Let $z_1, z_2 \in \mathbb{C}$. Then $z_1 z_2 = 0$ implies $z_1 = 0$ or $z_2 = 0$.

Proof 1. Let $z_1, z_2 \in \mathbb{C}$ with $z_1 z_2 = 0$. Suppose without loss of generality that $z_1 \neq 0$.

Proof 2 (using pairs). Forget it. Too messy. So sometimes the abstract stuff works better than the concrete stuff. Choosing the right approach can almost be an art form.
Theorem. Let $z_1, z_2 \in \mathbb{C}$. Then $z_1 z_2 = 0$ implies $z_1 = 0$ or $z_2 = 0$.

Proof 1. Let $z_1, z_2 \in \mathbb{C}$ with $z_1 z_2 = 0$. Suppose without loss of generality that $z_1 \neq 0$. Then z_1 has a multiplicative inverse z_1^{-1}.
Theorem. Let $z_1, z_2 \in \mathbb{C}$. Then $z_1 z_2 = 0$ implies $z_1 = 0$ or $z_2 = 0$.

Proof 1. Let $z_1, z_2 \in \mathbb{C}$ with $z_1 z_2 = 0$. Suppose without loss of generality that $z_1 \neq 0$. Then z_1 has a multiplicative inverse z_1^{-1}. We obtain z_2
Theorem. Let $z_1, z_2 \in \mathbb{C}$. Then $z_1z_2 = 0$ implies $z_1 = 0$ or $z_2 = 0$.

Proof 1. Let $z_1, z_2 \in \mathbb{C}$ with $z_1z_2 = 0$. Suppose without loss of generality that $z_1 \neq 0$. Then z_1 has a multiplicative inverse z_1^{-1}. We obtain $z_2 = 1 \cdot z_2$.
Theorem. Let $z_1, z_2 \in \mathbb{C}$. Then $z_1 z_2 = 0$ implies $z_1 = 0$ or $z_2 = 0$.

Proof 1. Let $z_1, z_2 \in \mathbb{C}$ with $z_1 z_2 = 0$. Suppose without loss of generality that $z_1 \neq 0$. Then z_1 has a multiplicative inverse z_1^{-1}. We obtain $z_2 = 1 \cdot z_2 = z_1^{-1} z_1 z_2$.
Theorem. Let \(z_1, z_2 \in \mathbb{C} \). Then \(z_1 z_2 = 0 \) implies \(z_1 = 0 \) or \(z_2 = 0 \).

Proof 1. Let \(z_1, z_2 \in \mathbb{C} \) with \(z_1 z_2 = 0 \). Suppose without loss of generality that \(z_1 \neq 0 \). Then \(z_1 \) has a multiplicative inverse \(z_1^{-1} \). We obtain \(z_2 = 1 \cdot z_2 = z_1^{-1} z_1 z_2 = z_1^{-1} 0 \)
Theorem. Let $z_1, z_2 \in \mathbb{C}$. Then $z_1 z_2 = 0$ implies $z_1 = 0$ or $z_2 = 0$.

Proof 1. Let $z_1, z_2 \in \mathbb{C}$ with $z_1 z_2 = 0$. Suppose without loss of generality that $z_1 \neq 0$. Then z_1 has a multiplicative inverse z_1^{-1}. We obtain $z_2 = 1 \cdot z_2 = z_1^{-1} z_1 z_2 = z_1^{-1} 0 = 0$.

Proof 2 (using pairs). Forget it. Too messy. So sometimes the abstract stuff works better than the concrete stuff. Choosing the right approach can almost be an art form.
Theorem. Let \(z_1, z_2 \in \mathbb{C} \). Then \(z_1 z_2 = 0 \) implies \(z_1 = 0 \) or \(z_2 = 0 \).

Proof 1. Let \(z_1, z_2 \in \mathbb{C} \) with \(z_1 z_2 = 0 \). Suppose without loss of generality that \(z_1 \neq 0 \). Then \(z_1 \) has a multiplicative inverse \(z_1^{-1} \). We obtain \(z_2 = 1 \cdot z_2 = z_1^{-1} z_1 z_2 = z_1^{-1} 0 = 0 \).
Theorem. Let $z_1, z_2 \in \mathbb{C}$. Then $z_1 z_2 = 0$ implies $z_1 = 0$ or $z_2 = 0$.

Proof 1. Let $z_1, z_2 \in \mathbb{C}$ with $z_1 z_2 = 0$. Suppose without loss of generality that $z_1 \neq 0$. Then z_1 has a multiplicative inverse z_1^{-1}. We obtain $z_2 = 1 \cdot z_2 = z_1^{-1} z_1 z_2 = z_1^{-1} 0 = 0$.

Proof 2 (using pairs).
Theorem. Let \(z_1, z_2 \in \mathbb{C} \). Then \(z_1 z_2 = 0 \) implies \(z_1 = 0 \) or \(z_2 = 0 \).

Proof 1. Let \(z_1, z_2 \in \mathbb{C} \) with \(z_1 z_2 = 0 \). Suppose without loss of generality that \(z_1 \neq 0 \). Then \(z_1 \) has a multiplicative inverse \(z_1^{-1} \). We obtain \(z_2 = 1 \cdot z_2 = z_1^{-1} z_1 z_2 = z_1^{-1} 0 = 0 \).

Proof 2 (using pairs). Forget it.
Theorem. Let $z_1, z_2 \in \mathbb{C}$. Then $z_1 z_2 = 0$ implies $z_1 = 0$ or $z_2 = 0$.

Proof 1. Let $z_1, z_2 \in \mathbb{C}$ with $z_1 z_2 = 0$. Suppose without loss of generality that $z_1 \neq 0$. Then z_1 has a multiplicative inverse z_1^{-1}. We obtain $z_2 = 1 \cdot z_2 = z_1^{-1} z_1 z_2 = z_1^{-1} 0 = 0$. \blacksquare

Proof 2 (using pairs). Forget it. Too messy.
Theorem. Let $z_1, z_2 \in \mathbb{C}$. Then $z_1 z_2 = 0$ implies $z_1 = 0$ or $z_2 = 0$.

Proof 1. Let $z_1, z_2 \in \mathbb{C}$ with $z_1 z_2 = 0$. Suppose without loss of generality that $z_1 \neq 0$. Then z_1 has a multiplicative inverse z_1^{-1}. We obtain $z_2 = 1 \cdot z_2 = z_1^{-1} z_1 z_2 = z_1^{-1} 0 = 0$.

Proof 2 (using pairs). Forget it. Too messy.
Theorem. Let $z_1, z_2 \in \mathbb{C}$. Then $z_1 z_2 = 0$ implies $z_1 = 0$ or $z_2 = 0$.

Proof 1. Let $z_1, z_2 \in \mathbb{C}$ with $z_1 z_2 = 0$. Suppose without loss of generality that $z_1 \neq 0$. Then z_1 has a multiplicative inverse z_1^{-1}. We obtain $z_2 = 1 \cdot z_2 = z_1^{-1} z_1 z_2 = z_1^{-1} 0 = 0$.

Proof 2 (using pairs). Forget it. Too messy.

So sometimes the abstract stuff works better than the concrete stuff.
Theorem. Let $z_1, z_2 \in \mathbb{C}$. Then $z_1 z_2 = 0$ implies $z_1 = 0$ or $z_2 = 0$.

Proof 1. Let $z_1, z_2 \in \mathbb{C}$ with $z_1 z_2 = 0$. Suppose without loss of generality that $z_1 \neq 0$. Then z_1 has a multiplicative inverse z_1^{-1}. We obtain

$$z_2 = 1 \cdot z_2 = z_1^{-1} z_1 z_2 = z_1^{-1} 0 = 0.$$

So sometimes the abstract stuff works better than the concrete stuff. Choosing the right approach can almost be an art form.
Definition.

For a \(a + ib \in C \) we define

\[|z| = \sqrt{a^2 + b^2} \]

and we call it the absolute value or the modulus of \(z \).

Theorem. Properties of the absolute value.

0. For all \(z \in C \), we have \(|z| \geq 0 \).

(Because \(|z| \in \mathbb{R} \), it is permissible to use inequalities here.)

1. For all \(z \in C \), we have \(|z| = 0 \) if and only if \(z = 0 \).

2. For all \(z_1, z_2 \in C \), we have

\[|z_1z_2| = |z_1||z_2| \]

3. The triangular inequality holds. That is, for all \(z_1, z_2 \in C \) we have

\[|z_1 + z_2| \leq |z_1| + |z_2| \]
Definition. For $a + ib \in \mathbb{C}$ we define $|z| := \sqrt{a^2 + b^2}$
Definition. For $a + ib \in \mathbb{C}$ we define $|z| := \sqrt{a^2 + b^2}$ and we call it *the absolute value* or *the modulus* of z.
Definition. For $a + ib \in \mathbb{C}$ we define $|z| := \sqrt{a^2 + b^2}$ and we call it the **absolute value** or the **modulus** of z.

Theorem.
Definition. For $a + ib \in \mathbb{C}$ we define $|z| := \sqrt{a^2 + b^2}$ and we call it the **absolute value** or the **modulus** of z.

Theorem. Properties of the absolute value.
Definition. For $a + ib \in \mathbb{C}$ we define $|z| := \sqrt{a^2 + b^2}$ and we call it the **absolute value** or the **modulus** of z.

Theorem. Properties of the absolute value.

0. For all $z \in \mathbb{C}$, we have $|z| \geq 0$.
Definition. For $a + ib \in \mathbb{C}$ we define $|z| := \sqrt{a^2 + b^2}$ and we call it the **absolute value** or the **modulus** of z.

Theorem. Properties of the absolute value.

0. For all $z \in \mathbb{C}$, we have $|z| \geq 0$. (Because $|z| \in \mathbb{R}$, it is permissible to use inequalities here.)
Definition. For $a + ib \in \mathbb{C}$ we define $|z| := \sqrt{a^2 + b^2}$ and we call it the absolute value or the modulus of z.

Theorem. Properties of the absolute value.

0. For all $z \in \mathbb{C}$, we have $|z| \geq 0$. (Because $|z| \in \mathbb{R}$, it is permissible to use inequalities here.)

1. For all $z \in \mathbb{C}$, we have $|z| = 0$ if and only if $z = 0$.

Bernd Schröder

Louisiana Tech University, College of Engineering and Science
Definition. For $a + ib \in \mathbb{C}$ we define $|z| := \sqrt{a^2 + b^2}$ and we call it the **absolute value** or the **modulus** of z.

Theorem. Properties of the absolute value.

1. For all $z \in \mathbb{C}$, we have $|z| \geq 0$. (Because $|z| \in \mathbb{R}$, it is permissible to use inequalities here.)
2. For all $z_1, z_2 \in \mathbb{C}$, we have $|z_1 z_2| = |z_1||z_2|$.
3. The **triangular inequality** holds. That is, for all $z_1, z_2 \in \mathbb{C}$ we have $|z_1 + z_2| \leq |z_1| + |z_2|$.

Definition. *For* \(a + ib \in \mathbb{C} \) *we define* \(|z| := \sqrt{a^2 + b^2} \) *and we call it the absolute value or the modulus of* \(z \).*

Theorem. *Properties of the absolute value.*

0. *For all* \(z \in \mathbb{C} \), *we have* \(|z| \geq 0 \). (*Because* \(|z| \in \mathbb{R} \), *it is permissible to use inequalities here.*)

1. *For all* \(z \in \mathbb{C} \), *we have* \(|z| = 0 \) *if and only if* \(z = 0 \).

2. *For all* \(z_1, z_2 \in \mathbb{C} \), *we have* \(|z_1z_2| = |z_1||z_2| \).

3. *The triangular inequality holds.*
Definition. For \(a + ib \in \mathbb{C} \) we define \(|z| := \sqrt{a^2 + b^2} \) and we call it the absolute value or the modulus of \(z \).

Theorem. Properties of the absolute value.

0. For all \(z \in \mathbb{C} \), we have \(|z| \geq 0 \). (Because \(|z| \in \mathbb{R} \), it is permissible to use inequalities here.)

1. For all \(z \in \mathbb{C} \), we have \(|z| = 0 \) if and only if \(z = 0 \).

2. For all \(z_1, z_2 \in \mathbb{C} \), we have \(|z_1 z_2| = |z_1||z_2| \).

3. The triangular inequality holds. That is, for all \(z_1, z_2 \in \mathbb{C} \) we have \(|z_1 + z_2| \leq |z_1| + |z_2| \).
Proof.
Proof. Parts 0 to 2 are good exercises.
Proof. Parts 0 to 2 are good exercises. For part 3, let $z_1 = a + ib$ and $z_2 = c + id$.
Proof. Parts 0 to 2 are good exercises. For part 3, let $z_1 = a + ib$ and $z_2 = c + id$. Then $0 \leq (ad - bc)^2$
Proof. Parts 0 to 2 are good exercises. For part 3, let $z_1 = a + ib$ and $z_2 = c + id$. Then $0 \leq (ad - bc)^2 = a^2d^2 - 2abcd + b^2c^2$
Proof. Parts 0 to 2 are good exercises. For part 3, let $z_1 = a + ib$ and $z_2 = c + id$. Then $0 \leq (ad - bc)^2 = a^2d^2 - 2abcd + b^2c^2$, so

$$2abcd \leq a^2d^2 + b^2c^2$$
Proof. Parts 0 to 2 are good exercises. For part 3, let \(z_1 = a + ib \) and \(z_2 = c + id \). Then \(0 \leq (ad - bc)^2 = a^2d^2 - 2abcd + b^2c^2 \), so

\[
2abcd \leq a^2d^2 + b^2c^2
\]

\[
a^2c^2 + 2abcd + b^2d^2
\]
Proof. Parts 0 to 2 are good exercises. For part 3, let $z_1 = a + ib$ and $z_2 = c + id$. Then $0 \leq (ad - bc)^2 = a^2d^2 - 2abcd + b^2c^2$, so

$$2abcd \leq a^2d^2 + b^2c^2$$

$$a^2c^2 + 2abcd + b^2d^2 \leq a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2$$
Proof. Parts 0 to 2 are good exercises. For part 3, let \(z_1 = a + ib \) and \(z_2 = c + id \). Then \(0 \leq (ad - bc)^2 = a^2d^2 - 2abcd + b^2c^2 \), so

\[
2abcd \leq a^2d^2 + b^2c^2
\]

\[
a^2c^2 + 2abcd + b^2d^2 \leq a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2
\]

\[(ac + bd)^2\]
Proof. Parts 0 to 2 are good exercises. For part 3, let $z_1 = a + ib$ and $z_2 = c + id$. Then $0 \leq (ad - bc)^2 = a^2d^2 - 2abcd + b^2c^2$, so

\[
2abcd \leq a^2d^2 + b^2c^2 \\
a^2c^2 + 2abcd + b^2d^2 \leq a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2 \\
(ac + bd)^2 \leq (a^2 + b^2)(c^2 + d^2)
\]
Proof. Parts 0 to 2 are good exercises. For part 3, let $z_1 = a + ib$ and $z_2 = c + id$. Then $0 \leq (ad - bc)^2 = a^2d^2 - 2abcd + b^2c^2$, so

$$2abcd \leq a^2d^2 + b^2c^2$$

$$a^2c^2 + 2abcd + b^2d^2 \leq a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2$$

$$(ac + bd)^2 \leq (a^2 + b^2)(c^2 + d^2)$$

$$2ac + 2bd$$
Proof. Parts 0 to 2 are good exercises. For part 3, let $z_1 = a + ib$ and $z_2 = c + id$. Then $0 \leq (ad - bc)^2 = a^2 d^2 - 2abcd + b^2 c^2$, so

$$2abcd \leq a^2 d^2 + b^2 c^2$$

$$a^2 c^2 + 2abcd + b^2 d^2 \leq a^2 c^2 + a^2 d^2 + b^2 c^2 + b^2 d^2$$

$$(ac + bd)^2 \leq (a^2 + b^2) (c^2 + d^2)$$

$$2ac + 2bd \leq 2 \sqrt{a^2 + b^2} \sqrt{c^2 + d^2}$$
Proof. Parts 0 to 2 are good exercises. For part 3, let $z_1 = a + ib$ and $z_2 = c + id$. Then $0 \leq (ad - bc)^2 = a^2d^2 - 2abcd + b^2c^2$, so

\[
2abcd \leq a^2d^2 + b^2c^2 \\
a^2c^2 + 2abcd + b^2d^2 \leq a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2 \\
(ac + bd)^2 \leq (a^2 + b^2)(c^2 + d^2) \\
2ac + 2bd \leq 2\sqrt{a^2 + b^2}\sqrt{c^2 + d^2} \\
da^2 + 2ac + c^2 + b^2 + 2bd + d^2
\]
Proof. Parts 0 to 2 are good exercises. For part 3, let $z_1 = a + ib$ and $z_2 = c + id$. Then $0 \leq (ad - bc)^2 = a^2d^2 - 2abcd + b^2c^2$, so

$$2abcd \leq a^2d^2 + b^2c^2$$

$$a^2c^2 + 2abcd + b^2d^2 \leq a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2$$

$$(ac + bd)^2 \leq (a^2 + b^2)(c^2 + d^2)$$

$$2ac + 2bd \leq 2\sqrt{a^2 + b^2}\sqrt{c^2 + d^2}$$

$$a^2 + 2ac + c^2 + b^2 + 2bd + d^2 \leq a^2 + b^2 + 2\sqrt{a^2 + b^2}\sqrt{c^2 + d^2} + c^2 + d^2$$
Proof. Parts 0 to 2 are good exercises. For part 3, let $z_1 = a + ib$ and $z_2 = c + id$. Then $0 \leq (ad - bc)^2 = a^2d^2 - 2abcd + b^2c^2$, so

\[
2abcd \leq a^2d^2 + b^2c^2
\]

\[
a^2c^2 + 2abcd + b^2d^2 \leq a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2
\]

\[
(ac + bd)^2 \leq (a^2 + b^2)(c^2 + d^2)
\]

\[
2ac + 2bd \leq 2\sqrt{a^2 + b^2}\sqrt{c^2 + d^2}
\]

\[
a^2 + 2ac + c^2 + b^2 + 2bd + d^2 \leq a^2 + b^2 + 2\sqrt{a^2 + b^2}\sqrt{c^2 + d^2} + c^2 + d^2
\]

\[
(a + c)^2 + (b + d)^2
\]
Proof. Parts 0 to 2 are good exercises. For part 3, let $z_1 = a + ib$ and $z_2 = c + id$. Then $0 \leq (ad - bc)^2 = a^2d^2 - 2abcd + b^2c^2$, so

\begin{align*}
2abcd & \leq a^2d^2 + b^2c^2 \\
a^2c^2 + 2abcd + b^2d^2 & \leq a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2 \\
(ac + bd)^2 & \leq (a^2 + b^2)(c^2 + d^2) \\
2ac + 2bd & \leq 2\sqrt{a^2 + b^2}\sqrt{c^2 + d^2} \\
a^2 + 2ac + c^2 + b^2 + 2bd + d^2 & \leq a^2 + b^2 + 2\sqrt{a^2 + b^2}\sqrt{c^2 + d^2} + c^2 + d^2 \\
(a + c)^2 + (b + d)^2 & \leq \left(\sqrt{a^2 + b^2} + \sqrt{c^2 + d^2}\right)^2
\end{align*}
Proof. Parts 0 to 2 are good exercises. For part 3, let \(z_1 = a + ib \) and \(z_2 = c + id \). Then

\[
0 \leq (ad - bc)^2 = a^2d^2 - 2abcd + b^2c^2,
\]

so

\[
2abcd \leq a^2d^2 + b^2c^2
\]

\[
a^2c^2 + 2abcd + b^2d^2 \leq a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2
\]

\[
(ac + bd)^2 \leq (a^2 + b^2)(c^2 + d^2)
\]

\[
2ac + 2bd \leq 2\sqrt{a^2 + b^2}\sqrt{c^2 + d^2}
\]

\[
a^2 + 2ac + c^2 + b^2 + 2bd + d^2 \leq a^2 + b^2 + 2\sqrt{a^2 + b^2}\sqrt{c^2 + d^2} + c^2 + d^2
\]

\[
(a + c)^2 + (b + d)^2 \leq \left(\sqrt{a^2 + b^2} + \sqrt{c^2 + d^2}\right)^2
\]

\[
|z_1 + z_2|^2
\]
Proof. Parts 0 to 2 are good exercises. For part 3, let $z_1 = a + ib$ and $z_2 = c + id$. Then $0 \leq (ad - bc)^2 = a^2d^2 - 2abcd + b^2c^2$, so

$$2abcd \leq a^2d^2 + b^2c^2$$

$$a^2c^2 + 2abcd + b^2d^2 \leq a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2$$

$$(ac + bd)^2 \leq (a^2 + b^2)(c^2 + d^2)$$

$$2ac + 2bd \leq 2\sqrt{a^2 + b^2}\sqrt{c^2 + d^2}$$

$$a^2 + 2ac + c^2 + b^2 + 2bd + d^2 \leq a^2 + b^2 + 2\sqrt{a^2 + b^2}\sqrt{c^2 + d^2} + c^2 + d^2$$

$$(a + c)^2 + (b + d)^2 \leq \left(\sqrt{a^2 + b^2} + \sqrt{c^2 + d^2}\right)^2$$

$$|z_1 + z_2|^2 \leq (|z_1| + |z_2|)^2$$
Proof. Parts 0 to 2 are good exercises. For part 3, let $z_1 = a + ib$ and $z_2 = c + id$. Then $0 \leq (ad - bc)^2 = a^2d^2 - 2abcd + b^2c^2$, so

\[
2abcd \leq a^2d^2 + b^2c^2
\]

\[
a^2c^2 + 2abcd + b^2d^2 \leq a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2
\]

\[
(ac + bd)^2 \leq (a^2 + b^2)(c^2 + d^2)
\]

\[
2ac + 2bd \leq 2\sqrt{a^2 + b^2}\sqrt{c^2 + d^2}
\]

\[
a^2 + 2ac + c^2 + b^2 + 2bd + d^2 \leq a^2 + b^2 + 2\sqrt{a^2 + b^2}\sqrt{c^2 + d^2} + c^2 + d^2
\]

\[
(a + c)^2 + (b + d)^2 \leq \left(\sqrt{a^2 + b^2} + \sqrt{c^2 + d^2}\right)^2
\]

\[
|z_1 + z_2|^2 \leq (|z_1| + |z_2|)^2
\]

\[
|z_1 + z_2|
\]
Proof. Parts 0 to 2 are good exercises. For part 3, let $z_1 = a + ib$ and $z_2 = c + id$. Then $0 \leq (ad - bc)^2 = a^2d^2 - 2abcd + b^2c^2$, so

$$2abcd \leq a^2d^2 + b^2c^2$$
$$a^2c^2 + 2abcd + b^2d^2 \leq a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2$$
$$(ac + bd)^2 \leq (a^2 + b^2)(c^2 + d^2)$$
$$2ac + 2bd \leq 2\sqrt{a^2 + b^2}\sqrt{c^2 + d^2}$$
$$a^2 + 2ac + c^2 + b^2 + 2bd + d^2 \leq a^2 + b^2 + 2\sqrt{a^2 + b^2}\sqrt{c^2 + d^2} + c^2 + d^2$$
$$(a + c)^2 + (b + d)^2 \leq (\sqrt{a^2 + b^2} + \sqrt{c^2 + d^2})^2$$
$$|z_1 + z_2|^2 \leq (|z_1| + |z_2|)^2$$
$$|z_1 + z_2| \leq |z_1| + |z_2|$$
Proof. Parts 0 to 2 are good exercises. For part 3, let $z_1 = a + ib$ and $z_2 = c + id$. Then $0 \leq (ad - bc)^2 = a^2d^2 - 2abcd + b^2c^2$, so

\[
2abcd \leq a^2d^2 + b^2c^2
\]
\[
a^2c^2 + 2abcd + b^2d^2 \leq a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2
\]
\[
(ac + bd)^2 \leq (a^2 + b^2)(c^2 + d^2)
\]
\[
2ac + 2bd \leq 2\sqrt{a^2 + b^2}\sqrt{c^2 + d^2}
\]
\[
a^2 + 2ac + c^2 + b^2 + 2bd + d^2 \leq a^2 + b^2 + 2\sqrt{a^2 + b^2}\sqrt{c^2 + d^2} + c^2 + d^2
\]
\[
(a + c)^2 + (b + d)^2 \leq \left(\sqrt{a^2 + b^2} + \sqrt{c^2 + d^2}\right)^2
\]
\[
|z_1 + z_2|^2 \leq (|z_1| + |z_2|)^2
\]
\[
|z_1 + z_2| \leq |z_1| + |z_2|
\]
What are Complex Numbers? Field Properties Absolute Value/Modulus The Complex Conjugate

Definition.

For $z = x + iy \in \mathbb{C}$, the complex conjugate of z is $\bar{z} = x - iy$.

$\Re(z) = x$ \hspace{2cm} $\Im(z) = y$

$z \overline{z} = (x + iy)(x - iy) = x^2 + y^2$

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

Complex Numbers
Definition. For $z = x + iy \in \mathbb{C}$, the complex conjugate of z is

$$\bar{z} := x - iy.$$
Definition. For $z = x + iy \in \mathbb{C}$, the complex conjugate of z is $\bar{z} := x - iy$.
Definition. For \(z = x + iy \in \mathbb{C} \), the **complex conjugate** of \(z \) is
\[
\bar{z} := x - iy.
\]
Definition. For $z = x + iy \in \mathbb{C}$, the **complex conjugate** of z is

$$
\bar{z} := x - iy.
$$
Definition. For $z = x + iy \in \mathbb{C}$, the complex conjugate of z is
\[\overline{z} := x - iy. \]
Definition. For $z = x + iy \in \mathbb{C}$, the complex conjugate of z is

$$\bar{z} := x - iy.$$
Definition. For \(z = x + iy \in \mathbb{C} \), the complex conjugate of \(z \) is
\[
\bar{z} := x - iy.
\]
Definition. For $z = x + iy \in \mathbb{C}$, the **complex conjugate** of z is

$$\overline{z} := x - iy.$$
Definition. For $z = x + iy \in \mathbb{C}$, the complex conjugate of z is $\overline{z} := x - iy$.

![Complex Conjugate Diagram](attachment:image.png)
Definition. For $z = x + iy \in \mathbb{C}$, the **complex conjugate** of z is

$$
\overline{z} := x - iy.
$$

Diagram:

- A complex number $z = x + iy$ is plotted on the complex plane.
- The real part x is shown on the horizontal axis (Re(z)), and the imaginary part y is shown on the vertical axis (Im(z)).
- The complex conjugate \overline{z} is shown as a reflection of z across the real axis.

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

Complex Numbers
Definition. For $z = x + iy \in \mathbb{C}$, the complex conjugate of z is $\bar{z} := x - iy$.
Definition. For $z = x + iy \in \mathbb{C}$, the complex conjugate of z is $\bar{z} := x - iy$.
Definition. For $z = x + iy \in \mathbb{C}$, the **complex conjugate** of z is

$$\overline{z} := x - iy.$$
Proposition.
Proposition. For all $z_1, z_2 \in \mathbb{C}$ we have the following.
Proposition. For all $z_1, z_2 \in \mathbb{C}$ we have the following.

1. $z_1 + z_2 = \overline{z_1 + z_2}$
Proposition. For all \(z_1, z_2 \in \mathbb{C} \) we have the following.

1. \(z_1 + z_2 = \overline{z_1 + z_2} \)
2. \(z_1 \cdot z_2 = \overline{z_1 \cdot z_2} \)
Proposition. For all $z_1, z_2 \in \mathbb{C}$ we have the following.

1. $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
2. $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$
3. $\overline{z_1 - z_2} = \overline{z_1} - \overline{z_2}$
Proposition. For all $z_1, z_2 \in \mathbb{C}$ we have the following.

1. $z_1 + z_2 = \overline{z_1} + \overline{z_2}$
2. $z_1 \cdot z_2 = \overline{z_1} \cdot \overline{z_2}$
3. $z_1 - z_2 = \overline{z_1} - \overline{z_2}$
4. $\left(\frac{z_1}{z_2} \right) = \frac{\overline{z_1}}{\overline{z_2}}$
Proposition. For all $z_1, z_2 \in \mathbb{C}$ we have the following.

1. $\bar{z_1 + z_2} = \bar{z_1} + \bar{z_2}$
2. $\bar{z_1 \cdot z_2} = \bar{z_1} \cdot \bar{z_2}$
3. $\bar{z_1 - z_2} = \bar{z_1} - \bar{z_2}$
4. $\left(\frac{z_1}{z_2} \right) = \frac{\bar{z_1}}{\bar{z_2}}$

Proof.
Proposition. *For all* $z_1, z_2 \in \mathbb{C}$ *we have the following.*

1. $z_1 + z_2 = \overline{z_1} + \overline{z_2}$
2. $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$
3. $\overline{z_1 - z_2} = \overline{z_1} - \overline{z_2}$
4. $\left(\frac{z_1}{z_2} \right) = \frac{\overline{z_1}}{\overline{z_2}}$

Proof. We only show part 2.
Proposition. For all $z_1, z_2 \in \mathbb{C}$ we have the following.

1. $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
2. $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$
3. $\overline{z_1 - z_2} = \overline{z_1} - \overline{z_2}$
4. $\overline{\left(\frac{z_1}{z_2} \right)} = \frac{\overline{z_1}}{\overline{z_2}}$

Proof. We only show part 2.

$\overline{z_1z_2}$
Proposition. For all $z_1, z_2 \in \mathbb{C}$ we have the following.

1. $\bar{z_1 + z_2} = \bar{z_1} + \bar{z_2}$
2. $\bar{z_1 \cdot z_2} = \bar{z_1} \cdot \bar{z_2}$
3. $\bar{z_1 - z_2} = \bar{z_1} - \bar{z_2}$
4. $\left(\frac{z_1}{z_2} \right) = \frac{\bar{z_1}}{\bar{z_2}}$

Proof. We only show part 2.

\[\bar{z_1 z_2} = (x_1, y_1)(x_2, y_2) \]
Proposition. For all \(z_1, z_2 \in \mathbb{C} \) we have the following.

1. \(z_1 + z_2 = \overline{z_1 + z_2} \)
2. \(z_1 \cdot z_2 = \overline{z_1} \cdot \overline{z_2} \)
3. \(z_1 - z_2 = \overline{z_1} - \overline{z_2} \)
4. \(\frac{z_1}{z_2} = \overline{\frac{z_1}{z_2}} \)

Proof. We only show part 2.

\[
\overline{z_1z_2} = (x_1, y_1)(x_2, y_2) = (x_1x_2 - y_1y_2, x_1y_2 + y_1x_2)
\]
Proposition. For all $z_1, z_2 \in \mathbb{C}$ we have the following.

1. $z_1 + z_2 = \overline{z_1} + \overline{z_2}$
2. $z_1 \cdot z_2 = \overline{z_1} \cdot \overline{z_2}$
3. $z_1 - z_2 = \overline{z_1} - \overline{z_2}$
4. $\left(\begin{array}{c} z_1 \\ z_2 \end{array} \right) = \left(\begin{array}{c} \overline{z_1} \\ \overline{z_2} \end{array} \right)$

Proof. We only show part 2.

$$\overline{z_1 z_2} = (x_1, y_1)(x_2, y_2) = (x_1 x_2 - y_1 y_2, x_1 y_2 + y_1 x_2)$$

$$= (x_1 x_2 - y_1 y_2, -x_1 y_2 - y_1 x_2)$$
Proposition. For all $z_1, z_2 \in \mathbb{C}$ we have the following.

1. $z_1 + z_2 = \overline{z_1 + z_2}$
2. $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$
3. $\overline{z_1 - z_2} = \overline{z_1} - \overline{z_2}$
4. $\left(\frac{z_1}{z_2}\right) = \frac{\overline{z_1}}{\overline{z_2}}$

Proof. We only show part 2.

\[
\overline{z_1 z_2} = (x_1, y_1)(x_2, y_2) = (x_1 x_2 - y_1 y_2, x_1 y_2 + y_1 x_2)
\]

\[
= (x_1 x_2 - y_1 y_2, -x_1 y_2 - y_1 x_2)
\]

\[
= (x_1 x_2 - (-y_1)(-y_2), x_1 (-y_2) + (-y_1)x_2)
\]
Proposition. For all $z_1, z_2 \in \mathbb{C}$ we have the following.

1. $z_1 + z_2 = \overline{z_1} + \overline{z_2}$
2. $z_1 \cdot z_2 = \overline{z_1} \cdot \overline{z_2}$
3. $z_1 - z_2 = \overline{z_1} - \overline{z_2}$
4. $\left(\frac{z_1}{z_2} \right) = \frac{\overline{z_1}}{\overline{z_2}}$

Proof. We only show part 2.

\[
\overline{z_1 z_2} = (x_1, y_1)(x_2, y_2) = (x_1 x_2 - y_1 y_2, x_1 y_2 + y_1 x_2)
\]
\[
= (x_1 x_2 - y_1 y_2, -x_1 y_2 - y_1 x_2)
\]
\[
= (x_1 x_2 - (-y_1)(-y_2), x_1 (-y_2) + (-y_1)x_2)
\]
\[
= (x_1, -y_1)(x_2, -y_2)
\]
Proposition. For all \(z_1, z_2 \in \mathbb{C} \) we have the following.

1. \(\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2} \)
2. \(\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2} \)
3. \(\overline{z_1 - z_2} = \overline{z_1} - \overline{z_2} \)
4. \(\overline{\left(\frac{z_1}{z_2} \right)} = \frac{\overline{z_1}}{\overline{z_2}} \)

Proof. We only show part 2.

\[
\overline{z_1 z_2} = (x_1, y_1)(x_2, y_2) = (x_1 x_2 - y_1 y_2, x_1 y_2 + y_1 x_2)
\]
\[
= (x_1 x_2 - y_1 y_2, -x_1 y_2 - y_1 x_2)
\]
\[
= (x_1 x_2 - (-y_1)(-y_2), x_1(-y_2) + (-y_1)x_2)
\]
\[
= (x_1, -y_1)(x_2, -y_2)
\]
\[
= (x_1, y_1)(\overline{x_2}, \overline{y_2})
\]
Proposition. For all $z_1, z_2 \in \mathbb{C}$ we have the following.

1. $z_1 + z_2 = \overline{z_1} + \overline{z_2}$
2. $z_1 \cdot z_2 = \overline{z_1} \cdot \overline{z_2}$
3. $z_1 - z_2 = \overline{z_1} - \overline{z_2}$
4. $\left(\frac{z_1}{z_2}\right) = \frac{\overline{z_1}}{\overline{z_2}}$

Proof. We only show part 2.

\[
\overline{z_1 z_2} = (x_1, y_1)(x_2, y_2) = (x_1x_2 - y_1y_2, x_1y_2 + y_1x_2)
= (x_1x_2 - y_1y_2, -x_1y_2 - y_1x_2)
= (x_1x_2 - (-y_1)(-y_2), x_1(-y_2) + (-y_1)x_2)
= (x_1, -y_1)(x_2, -y_2)
= \overline{(x_1, y_1)(x_2, y_2)} = \overline{z_1} \overline{z_2}
\]
Proposition. For all $z_1, z_2 \in \mathbb{C}$ we have the following.

1. $z_1 + z_2 = \overline{z_1} + \overline{z_2}$
2. $z_1 \cdot z_2 = \overline{z_1} \cdot \overline{z_2}$
3. $z_1 - z_2 = \overline{z_1} - \overline{z_2}$
4. $\left(\frac{z_1}{z_2}\right) = \frac{\overline{z_1}}{\overline{z_2}}$

Proof. We only show part 2.

\[
\overline{z_1 z_2} = (x_1, y_1)(x_2, y_2) = (x_1x_2 - y_1y_2, x_1y_2 + y_1x_2)
\]
\[
= (x_1x_2 - y_1y_2, -x_1y_2 - y_1x_2)
\]
\[
= (x_1x_2 - (-y_1)(-y_2), x_1(-y_2) + (-y_1)x_2)
\]
\[
= (x_1, -y_1)(x_2, -y_2)
\]
\[
= \overline{(x_1, y_1)(x_2, y_2)} = \overline{z_1 z_2}
\]
Proposition.
Proposition. For all $z \in \mathbb{C}$, the equalities $z + \bar{z} = 2\Re(z)$ hold.
Proposition. For all $z \in \mathbb{C}$, the equalities $z + \bar{z} = 2\Re(z)$ and $|z|^2 = z\bar{z}$ hold.
Proposition. For all $z \in \mathbb{C}$, the equalities $z + \bar{z} = 2\Re(z)$ and $|z|^2 = z\bar{z}$ hold. Moreover, for all $z \in \mathbb{C} \setminus \{0\}$ the multiplicative inverse is

$$\frac{1}{z} = \frac{\bar{z}}{|z|^2}.$$
Proposition. For all $z \in \mathbb{C}$, the equalities $z + \bar{z} = 2\Re(z)$ and $|z|^2 = z\bar{z}$ hold. Moreover, for all $z \in \mathbb{C} \setminus \{0\}$ the multiplicative inverse is

$$\frac{1}{z} = \frac{\bar{z}}{|z|^2}.$$

Proof.
Proposition. For all \(z \in \mathbb{C} \), the equalities \(z + \overline{z} = 2 \Re(z) \) and \(|z|^2 = z \overline{z} \) hold. Moreover, for all \(z \in \mathbb{C} \setminus \{0\} \) the multiplicative inverse is

\[
\frac{1}{z} = \frac{\overline{z}}{|z|^2}.
\]

Proof. Good exercise.
Proposition. For all $z \in \mathbb{C}$, the equalities $z + \bar{z} = 2\Re(z)$ and $|z|^2 = z\bar{z}$ hold. Moreover, for all $z \in \mathbb{C} \setminus \{0\}$ the multiplicative inverse is

$$\frac{1}{z} = \frac{\bar{z}}{|z|^2}.$$

Proof. Good exercise.