
MELLIN TRANSFORM FORMULAS FOR DRINFELD MODULES

OĞUZ GEZMİŞ AND NATHAN GREEN

Abstract. We introduce formulas for the logarithms of Drinfeld modules using a frame-
work recently developed by the second author. We write the logarithm function as the
evaluation under a motivic map of a product of rigid analytic trivializations of t-motives.
We then specialize our formulas to express special values of Goss L-functions as Drinfeld
periods multiplied by rigid analytic trivializations evaluated under this motivic map. We
view these formulas as characteristic-p analogues of integral representations of Hasse-Weil
type zeta functions. We also apply this machinery for Drinfeld modules tensored with the
tensor powers of the Carlitz module, which serves as the Tate twist of a Drinfeld module.

1. Introduction

1.1. Motivation. The main result of this paper gives a positive-characteristic function field
analogue of certain integral representations of Hasse-Weil type zeta functions. In order to
make a comparison with our new results, we remind the reader first some of the classical
theory. The starting point is one of the original proofs of the functional equation and
analytic continuation of the Riemann zeta function. The classical theta function, for t ∈ C
with ℜ(t) > 0

Θ(t) =
∑
n∈Z

e−πn2t,

satisfies the functional equation

(1.1) Θ(t) = t−1/2Θ(1/t).

We also recall the definition of the Mellin transform for a real-valued function f(x) with
suitable decay conditions at x = 0 and x = ∞,

(1.2) M(f)(s) =

∫ ∞

0

f(x)xs−1dx,

for suitable s ∈ C. If we take the Mellin transform of a normalized version of Θ(t) (and
account correctly for convergence, which is nontrivial), we get

(1.3) ξ(s) =M

(
Θ(t)− 1

2

)
(s/2),

where ξ(s) = π−s/2Γ(s/2)ζ(s) is the completed zeta function. Further, if we take the Mellin
transform of (1.1) then we recover the functional equation for the Riemann zeta function,

ξ(s) = ξ(1− s).

These derivations also establish the analytic continuation of the Riemann zeta function. We
refer the reader to [27, §7.1] for details on such constructions.
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With this theory as our base point, there are several important directions we can generalize
these ideas. First, if we replace the classical theta function with theta series involving
characters, then the same theory gives the functional equation and analytic continuation of
Dirichlet L-functions with characters. A further generalization to higher dimensional theta
series then gives the same theory for Dedekind zeta functions. Again, all this theory is
detailed in [27, §7.2-7.5].
On the other hand, we can instead investigate Hasse-Weil zeta functions attached to

algebraic varieties (the previous case of Dedekind zeta functions can be seen as a special case
in this setting — that discussion is outside the scope of this introduction). In this setting,
at least for elliptic curves defined over the rational numbers, Wiles’s modularity theorem
[34] shows that such zeta functions are given as the Mellin transform of special meromorphic
functions, in this case modular forms. There are vast generalizations of this theory to motives
and profound conjectures that come with them, such as Beilinson’s conjectures (see [8]) and
various aspects of the Langlands program (see [25]).

Our results in this paper establish an analogy to those described above in the positive
characteristic function field setting. We prove that certain special values of L-functions can
be realized as an algebraic interpolation of a Mellin transform of certain special functions.
On the one hand, these L-values are certainly of Hasse-Weil type, because they have an
Euler product representation given by the characteristic polynomial of the Frobenius acting
on certain modules (see (1.6) and (1.7)). On the other hand, our formulas indicate that these
L-values can be represented as a Mellin-type transform, not of Drinfeld modular forms as
one might expect, but rather of rigid analytic trivializations of Drinfeld modules, which bear
several similarities to classical theta function. Thus the results we present here should be
viewed as a hybrid between the two generalizations given above: They express Hasse-Weil
type L-values in terms of a Mellin transform of an analogue of the classical theta function.
Whether there is a connection between the constructions in this paper and Drinfeld modular
forms is an open question. We provide a few comments on this question in Remark 3.11.

Before continuing we say a few words about the difficulty and significance of our results. In
the classical setting, one uses analytic ideas (cycle integration) to connect theta functions and
related objects directly to L-functions and zeta functions. Our setting occurs in characteristic
p, where it is cumbersome to work with characteristic-p valued measures and integration
(see Remark 1.3 for the comparison of our results with the already existing literature). Our
proofs here instead provide an algebraic alternative to this integration theory which takes a
round-about path to connect special values of L-functions with the analogue of the classical
theta function. Namely, we connect L-function values to logarithm values using the work
of Taelman [31] and the first author [11]. Our new formulas in this paper then connect
values of the logarithm to rigid analytic trivializations of Anderson t-motives. Works of
Maurischat [26], Pellarin [29] and others then allow us to connect rigid analytic trivializations
to periods and Anderson generating functions, which (as we explain below) are an analogue
of theta functions. The main new technical advances in this paper include modifying a
crucial construction from the work of the second author [19] to a tensor product of motives
(this is our (2.15)), a very careful analysis of the convergence properties of (3.10) carried out
in §3.3, as well as a particular choice of t-motive bases (discussed in §2.3-2.4) to account for
the Θϕ,τ matrix in (2.14).

1.2. The Mellin transform of Drinfeld modules and L-functions. We now briefly
describe our main results, after which we will make some more precise comparisons to the
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classical theory. Let q = pr be a prime power, and let A := Fq[θ] and K := Fq(θ). Let K∞
be the completion of K at the infinite place with respect to the norm |·|, normalized so that
|θ| = q. This completion equals the formal Laurent series ring Fq((1/θ)) with coefficients in
Fq. Let C∞ be a completion of an algebraic closure of K∞. Consider the non-commutative
polynomial ring C∞[τ ] which is defined subject to the condition τc = cqτ for all c ∈ C∞.
We define a Drinfeld module ϕ of rank r to be an Fq-algebra homomorphism ϕ : A→ C∞[τ ]
given by

(1.4) ϕθ := ϕ(θ) := θ + k1τ + · · ·+ krτ
r, kr ̸= 0.

We also consider expϕ and logϕ to be the exponential and logarithm functions associated to
ϕ (see (2.2) for details). The function expϕ has a kernel Λϕ which is a free A-module of rank
r, called the period lattice of ϕ. Let us denote a set of generating periods as λ1, . . . , λr. The
comparison is often made between a Drinfeld module ϕ and an elliptic curve E defined over
C. The periods λ1, . . . , λr should then be compared with the Weierstrass periods of E and
the exponential function expϕ should be compared to the Weierstrass-℘ function.

We now briefly define Anderson generating functions which are intimately connected with
periods. For a given period λi, define

fi :=
∞∑
i=0

expϕ

(
λi
θi+1

)
ti ∈ C∞[[t]],

where t is a commuting variable (in fact, fi is in a Tate algebra, see §2.2). We then define
the matrix

Υ :=


f1 · · · · · · fr
f
(1)
1 · · · · · · f

(1)
r

...
...

f
(r−1)
1 · · · · · · f

(r−1)
r

 ,

where ·(k) is the k-fold application of a Frobenius twisting automorphism (again, see §2.2).
The matrix Υ is constructed to be a rigid analytic trivialization for the Drinfeld module
ϕ. Namely, there is a naturally defined matrix Θ ∈ Matr×r(C∞) coming from the t-motive
associate to ϕ such that we have the functional equation

ΘΥ = Υ(1).

Let V ∈ Matr×r(C∞) be a matrix of constants defined in (2.9) and let

(1.5) Ψ := V −1((Υ(1))tr)−1.

We explain all this theory more extensively in §2.3.
The final ingredient to state our first main theorem comes from a recent paper of the

second author [19]. There, the second author develops a new map δM1,z for a parameter
z ∈ C∞ from Mϕ, the t-motive associated to ϕ, to C∞ which recovers the structure of the
Drinfeld module ϕ (see (2.13) for a precise definition). This map δM1,z should be viewed as
an algebraic interpolation of cycle integration; in [19, Cor 5.10] the second author proves an
algebraic analogue of the Mellin transform formula which relates the exponential function
with the Carlitz zeta values ζA(n) given by

ζA(n) :=
∑
a∈A

a monic

1

an
∈ K∞.
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Our first main theorem relates the logarithm function of a Drinfeld module of rank r to this
motivic map δM1,z evaluated at a product of rigid analytic trivializations.

Theorem 1.1. Let ϕ be a Drinfeld module given by

ϕθ = θ + k1τ + · · ·+ krτ
r

so that |ki| ≤ 1 for each 1 ≤ i ≤ r−1 and kr ∈ F×
q . Let z ∈ C∞ be an element in the domain

of convergence of logϕ and let ek be the k-th standard basis vector. Then, we have

logϕ(z) = δ
Mϕ

1,z

(
1

t− θ
etr1 V

trΥ
(1)
|t=θ(Ψ

tr)(−1)

)
.

To describe our next result, in what follows, we briefly describe Goss L-functions attached
to ϕ introduced by Goss [16], inspired by the ideas of Gekeler [10, Rem. 5.10]. For a
given monic irreducible polynomial w ∈ A, we set Kw to be the completion of K at the place
corresponding to w. We let (ρw) be a family of continuous representations of the Galois group
of Ksep/K which is strictly compatible in the usual sense, meaning that the characteristic
polynomial

Pv(X) := det(1−X · ρw(Frobv))

of the Frobenius at a place v ̸= w of K acting on the w-adic Tate module of ϕ is independent
of the choice of prime w and has coefficients in A (along with a ramification condition - see
[18, §8.10] for full details). We further let Pv(X) = (1−a1X) · · · (1−arX) for some a1, . . . , ar
lying in a fixed algebraic closure of K and set

P∨
v (X) := (1− a−1

1 X) · · · (1− a−1
r X).

We then define the L-function of ϕ to be

(1.6) L(ϕ, n) :=
∏
v

Pv(v
−n)−1,

and the dual L-function of ϕ by

(1.7) L(ϕ∨, n) :=
∏
v

P∨
v (v

−n)−1,

where the product runs over all the finite places of A. In this definition, by [7, Cor. 3.6],
we know that L(ϕ, n) converges in K∞ for all n ∈ Z≥1 and L(ϕ∨, n) converges in K∞ for
all n ∈ Z≥0 (there is a way to extend the domain of such L-functions to an analogue of the
upper half plane — since we do not use that here, we refer the reader to [18, §8.1]). We
also note that when ϕ is the Carlitz module given by Cθ := θ + τ , we have, for any positive
integer n, L(C∨, n− 1) = ζA(n). We refer the reader to [18] and [11] for full details on these
constructions.

If we set z = 1 in the previous theorem and choose a Drinfeld module ϕ as in Theorem
1.1 so that ki ∈ Fq for each 1 ≤ i ≤ r − 1, then the logarithm value becomes a special value
of the (dual) Goss L-function of ϕ. As a corollary to Theorem 1.1, we get the following.

Corollary 1.2. Let ϕ be a Drinfeld module as in Theorem 1.1 so that each ki ∈ Fq and let
π = (λ1, . . . , λr) be a vector of fundamental periods of ϕ. Then we have

L(ϕ∨, 0) = δ
Mϕ

1,z

(
1

θ − t
π(Ψtr)(−1)

)
.
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Remark 1.3. It is appropriate to make a brief comparison between our formulas and the
results in [15] and [17] on the Mellin transform in the function field setting. Let Av be
the completion of A at v. Inspired by the construction of formal p-adic Mellin transform,
in [15, §3], Goss developed the theory of Av-valued measures on Av and defined the Mellin
transform of the Carlitz zeta value ζA(n) to be an element in the divided power series ring (see
[14, §5] for the details on divided power series). Although its coefficients are arithmetically
interesting and related to the Carlitz zeta values (see [33, Thm. VII]), there is no immediate
relation to ζA(n) as in Corollary 1.2. Hence our construction seems to be better-suited in
this direction. Later on, using the seminal work of Teitelbaum [32] relating v-adic measures
to Drinfeld cusp forms, Goss [17, §4] defined the Mellin transform of a Drinfeld cusp form
f as a continuous function Lf on Zp whose values are attained in a finite extension K∞.
However, several aspects of the theory is still missing such as the link between f and the
functional equation of Lf as well as the appearance of Lf as a Dirichlet series summed over
the monic polynomials in A, which could be more parallel to the classical setting. It would be
interesting to relate our construction in the present paper to the setting of Drinfeld modular
forms to have a better understanding of the Mellin transformation (see Remark 3.11 for the
discussion on a potential link to Drinfeld modular forms).

1.3. Comparison with the classical theta functions. Having stated our first two main
theorems, we now make some precise comparisons between our setting and the classical
theory discussed above. Fixing a (q − 1)-st root of −θ, we define the Carlitz fundamental
period by

π̃ := θ(−θ)1/(q−1)

∞∏
j=1

(
1− θ1−qj

)−1

∈ C×
∞.

In the case of the Carlitz module C, our main results discussed above reduce to a formula
from [19, Cor. 5.10]

(1.8) L(C∨, 0) = ζA(1) = δM1,z(−π̃Ω),

where Ω := 1/ω
(1)
C is defined in (2.6). In this context, the function Ω should be viewed as an

analogue of the theta function Θ(z) for two reasons:

(1) Taking the function field Mellin transform of Ω produces zeta values similar to formula
(1.3).

(2) It satisfies a similar functional equation to the classical theta function. Namely,

(1.9) t · Ω = C∗
θ (Ω),

where C∗
θ is the adjoint Carlitz operator C∗

θ (z) := θz + z1/q (compare with (1.1)).

Remark 1.4. We note here that taking the Mellin transform of (1.1) (after some adjustments
for convergence) gives the functional equation for the completed Riemann zeta function
ξ(s) = ξ(1 − s). It is therefore natural to ask about what happens when we combine
the functional equation (1.9) with our function field Mellin transform (1.8). We have the
transformation

δM1,z(tπ̃Ω) = δM1,Cθ(z)
(π̃Ω) = δM1,θz(π̃Ω) + δM1,z(1)(π̃Ω) = logC(θ) + ζA(1)

(recall that for this application we set z = 1). On the other hand we also find that

δM1,z(tπ̃Ω) = δM1,z(π̃C
∗
θ (Ω)) = δM1,z(π̃θΩ) + π̃δM1,z(Ω

(−1)) = θζA(1),
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since one can show fairly quickly that Ω(−1) is in the kernel of δM1,z and since δM1,z is C∞-linear.
After recalling Carlitz’s formula that logC(1) = ζA(1), we arrive at

logC(Cθ(1)) = θ logC(1),

so we have recovered the functional equation for the Carlitz logarithm. We suspect that a
similar phenomenon happens in the case of Drinfeld modules and more general t-modules.
In fact, it seems possible that one could reverse the direction of these calculations to prove
our logarithm formulas in §3 in an alternate way. However, there are many details to work
out so we leave this as a question to be answered in future work.

In the case of Drinfeld modules of rank r discussed in the present paper, the matrix Ψ
from Corollary 1.2 is a higher-rank generalization of Ω discussed above and should be viewed
as a higher dimensional theta function. Indeed, it satisfies the functional equation

(1.10) ΦΨ = Ψ(−1),

where Φ ∈ Matr×r(K[t]) is defined in (2.5). Analyzing this functional equation shows that
if we denote the top row of Ψ as (g1, . . . , gr), then each gi satisfies

(1.11) t · gi = ϕ∗
θ(gi),

where ϕ∗ is the adjoint of the Drinfeld module ϕ given by ϕ∗
θ := θ+ k

1/q
1 τ−1 + · · ·+ k

1/qr

r τ−r

(see [18, §4.14] for more details). Our Corollary 1.2 then says that taking the function field
Mellin transform of a vector of periods multiplied by this analogue of a theta function gives
a Hasse-Weil type zeta value.

1.4. Tate twists of Drinfeld modules. We also give a version of our main theorems for
Drinfeld modules tensored with the positive powers of the Carlitz module. This is akin
to taking the Tate twist of a motive, and shifts the value of the corresponding L-function
allowing us to get formulas for values n larger than 1. Our result provides an interesting link
between certain coordinates of the logarithms of Tate twists of Drinfeld modules and their
periods as well as quasi-periods.

In this setting, let ϕ be a Drinfeld module of rank r given as in (1.4) without any restriction
on the coefficients k1, . . . , kr ∈ C∞. For any 1 ≤ ℓ ≤ r − 1, we set Fτℓ : C∞ → C∞ to be the
unique entire function satisfying

Fτℓ(θz)− θFτℓ(z) = expϕ(z)
qℓ

for all z ∈ C∞. Furthermore, for any 1 ≤ i ≤ rk + 1, we let pi : Crk+1
∞ → C∞ be the

projection onto the i-th coordinate.

Theorem 1.5. Let ρ = ϕ⊗C⊗k and let z ∈ Crk+1
∞ be an element in the domain of convergence

of Logρ and λ1, . . . , λr be fundamental periods of ϕ. Then

prk+1−(j−1)(Logρ(z)) =δ
Mρ

1,z

(
π̃k

ωk
C(θ−t)

(λ1, . . . , λr)(Ψ
tr)(−1)

)
if j = 1

δ
Mρ

1,z

(
π̃k

ωk
C(t−θ)

(Fτr−(j−1)(λ1), . . . , Fτr−(j−1)(λr))(Ψ
tr)(−1)

)
if 2 ≤ j ≤ r

.
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In our last result, we analyze the special values of Goss L-functions of Drinfeld modules
defined over Fq. Let ϕ be a Drinfeld module of rank 2 given as in (1.4) such that k1, k2 ∈ Fq.

Let us also consider the Drinfeld module ϕ̃ given by

ϕ̃θ := θ − k1k
−1
2 τ + k−1

2 τ 2.

There exists a particular relation between certain coordinates of logarithms of Anderson t-
module ρ̃ := ϕ̃⊗C⊗k and L(ϕ, k+1) (see Corollary 4.5 for more details). Using this relation
allows us to obtain the following corollary, restated as Corollary 4.5 later, of Theorem 1.5.

Corollary 1.6. For k ≥ 1, let zi ∈ Mat(2k+1)×1(Fq) be the i-th unit vector. We have

L(ϕ, k + 1) =

det

δMρ̃

1,z2k

(
π̃k

ωk
C(t−θ)

(F̃τ (λ1), F̃τ (λ2))(Ψ
tr
ϕ̃
)(−1)

)
δ
Mρ̃

1,z2k+1

(
π̃k

ωk
C(t−θ)

(F̃τ (λ1), F̃τ (λ2))(Ψ
tr
ϕ̃
)(−1)

)
δ
Mρ̃

1,z2k

(
π̃k

ωk
C(t−θ)

(−λ1,−λ2)(Ψtr
ϕ̃
)(−1)

)
δ
Mρ̃

1,z2k+1

(
π̃k

ωk
C(t−θ)

(−λ1,−λ2)(Ψtr
ϕ̃
)(−1)

)  .
where Ψϕ̃ is the matrix defined as in (1.5) with respect to ϕ̃ and F̃ : C∞ → C∞ is the unique
entire function satisfying

F̃τ (θz)− θF̃τ (z) = expϕ̃(z)
q

for all z ∈ C∞.

1.5. Outline of the paper. In §2, we introduce Anderson t-modules, Anderson t-motives,
dual t-motives and the formulas obtained by the second author in [19] for the logarithms of
Anderson t-modules. In §3, after discussing the tensor construction for Drinfeld modules by
using our results in §3.2, we provide a proof for Theorem 1.1 as well as Corollary 1.2 which
will be restated as Theorem 3.9 and Corollary 3.10 respectively. Finally, in §4, we discuss
the structure of a certain motivic map (see §4.2) and then, using our ideas established in
§3.2, we prove Theorem 1.5 (restated as Theorem 4.4 later).

Acknowledgments. The authors would like to express their gratitude to Gebhard Böckle,
Matt Papanikolas, Federico Pellarin and Wei-Lun Tsai for fruitful discussions and useful
suggestions. The second author expresses grateful support for funding from the state of
Louisiana Board of Regents and from the NSF. This material is based upon work supported
by the National Science Foundation under Grant No. (2302399). The first author acknowl-
edges support by Deutsche Forschungsgemeinschaft (DFG) through CRC-TR 326 ‘Geometry
and Arithmetic of Uniformized Structures’, project number 444845124.

2. Preliminaries and background

Our goal in this section is to review the notion of Anderson t-modules, Anderson t-motives
and dual t-motives as well as a formula for the logarithms of Anderson t-modules derived in
[19]. The main references for our exposition are [1], [3], [19] and [21, §2.3–2.5].

2.1. Anderson t-modules. For any matrix M = (mµν) ∈ Matd1×d2(C∞) and i ∈ Z, we
define the i-th twist of M by M(i) := (mqi

µν). Furthermore, we let

Matd1×d2(C∞)[[τ ]] :=

{∑
i≥0

Miτ
i | Mi ∈ Matd1×d2(C∞)

}
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and when d = d1 = d2, we define the non-commutative power series ring Matd(C∞)[[τ ]]
subject to the condition

τM = M(1)τ.

We also let Matd(C∞)[τ ] be the subring of Matd(C∞)[[τ ]] consisting of polynomials in τ .

Definition 2.1. (i) An Anderson t-module G of dimension d ≥ 1 is a tuple (Gd
a/C∞

, ϕ)

consisting of the d-dimensional additive algebraic group Gd
a/C∞

defined over C∞ and

an Fq-algebra homomorphism ϕ : A→ Matd(C∞)[τ ] given by

(2.1) ϕθ := d[θ] + A1τ + · · ·+ Aℓτ
ℓ

so that ℓ ∈ Z≥1 and d[θ] := θ Idd +N for some nilpotent matrix N.
(ii) The morphisms between Anderson t-modules G1 = (Gd1

a/C∞
, ϕ) and G2 = (Gd2

a/C∞
, ψ)

are defined to be the morphisms g : Gd1
a/C∞

→ Gd2
a/C∞

of algebraic groups satisfying

gϕθ = ψθg.

We define G(C∞) := Matd×1(C∞) equipped with the A-module structure given by

θ · z = ϕθ(z) := d[θ]z+ A1z
(1) + · · ·+ Aℓz

(ℓ), z ∈ Matd×1(C∞).

We also consider Lie(G)(C∞) := Matd×1(C∞) which is equipped with the A-module action
defined by

θ · z := d[θ]z.

It is known, due to Anderson [1, §2], that there exists a unique infinite series ExpG :=∑
i≥0Qiτ

i ∈ Matd(C∞)[[τ ]] satisfying Q0 = Idd and

ExpG d[θ] = ϕθ ExpG .

Moreover, it induces an entire function ExpG : Lie(G)(C∞) → G(C∞) given by

(2.2) ExpG(z) :=
∞∑
i=0

Qiz
(i).

We let LogG :=
∑

i≥0 Piτ
i ∈ Matd(C∞)[[τ ]] be the formal inverse of ExpG ∈ Matd(C∞)[[τ ]].

On a certain subset D of G(C∞), LogG induces a vector valued function LogG : D →
Lie(G)(C∞) defined by

LogG(z) :=
∞∑
i=0

Piz
(i).

For further details on the exponential and the logarithm function, we refer the reader to [21,
§2.5.1].

In what follows, we provide some examples of Anderson t-modules.

Example 2.2. (i) Any Drinfeld module ϕ is an Anderson t-module (Ga/C∞ , ϕ) of di-
mension one.

(ii) Let C : A→ C∞[τ ] be the Carlitz module and k ∈ Z≥1. We consider the k-th tensor
power of the Carlitz module C⊗k := (Gk

a/C∞
, ψ) where ψ : A→ Matk(C∞)[τ ] is given
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by (see [2])

ψθ :=


θ 1

. . .
. . .
. . . 1

θ

+


0 . . . . . . 0
...

...

0
...

1 0 . . . 0

 τ.

(iii) Let ϕ be a Drinfeld module of rank r given as in (1.4). We define the tensor product
ϕ and the k-th tensor power of the Carlitz module as ϕ⊗ C⊗k := (Grk+1

a/C∞
, ρ) where

ρ : A→ Matrk+1(C∞)[τ ]

is given by

ρθ :=



θ · · · 0

rk + 1− r︷ ︸︸ ︷
1 0 · · · 0

. . .
. . .

. . .
...

. . .
. . .

. . . 0
θ · · · 0 1

θ · · · 0
. . .

...
θ


+



0 · · · · · · · · · · · · · · · 0
...

...
0 0
1 0 · · · · · · · · · · · · 0

. . .
. . .

...

1
. . .

...
k1 · · · · · · kr 0 · · · 0


τ.

For more details on the tensor product of Drinfeld modules of arbitrary rank with the
tensor powers of the Carlitz module, we refer the reader to [11, 12, 20, 22, 23].

Consider ΛG := Ker(ExpG) ⊂ Lie(G)(C∞). By the work of Anderson [1, Lem. 2.4.1],
we know that, under a certain condition on G, ΛG forms a finitely generated and discrete
A-module. We call any non-zero element of ΛG a period of G. Indeed, by [1, Thm.4], when
G is the Anderson t-module either in Example 2.2(i) or in 2.2(iii), ΛG is free of rank r as an
A-module. Moreover, if G is the k-th tensor power of the Carlitz module, then ΛG is free of
rank one.

2.2. Anderson generating functions. For any c ∈ C×
∞, we define the Tate algebra

Tc :=

{
g =

∑
i≥0

ait
i ∈ C∞[[t]] | |cai| → 0 as i→ ∞

}
.

It is equipped with the multiplicative norm ∥·∥c given by

∥g∥c := max{|ci||ai| | i ≥ 0}.

To ease the notation, we denote T1 by T and ∥·∥1 by ∥·∥.
Let ϕ be a Drinfeld module of rank r given as in (1.4). In what follows, we define a

certain element in T which will be later useful to describe a particular property of Anderson
t-motives of Drinfeld modules. For any z ∈ C∞, the Anderson generating function sϕ(z; t) is
given by

sϕ(z; t) :=
∞∑
i=0

expϕ

( z

θi+1

)
ti ∈ T.
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Let t be a variable over C∞. For any f =
∑

i≥0 ait
i ∈ C∞[[t]] and j ∈ Z, we set f (j) :=∑

i≥0 a
qj

i t
i ∈ C∞[[t]]. We now state a fundamental property of Anderson generating functions

due to Pellarin.

Proposition 2.3 (Pellarin,[28, §4.2]). Let λ ∈ Ker(expϕ). Then

(t− θ)sϕ(λ; t) = k1sϕ(λ; t)
(1) + · · ·+ krsϕ(λ; t)

(r).

2.3. Anderson t-motives. We define the non-commutative ring C∞[t, τ ] := C∞[t][τ ] with
respect to the condition τf = f (1)τ where f =

∑
i≥0 ait

i ∈ C∞[t].

Definition 2.4. (i) An Anderson t-motive M is a left C∞[t, τ ]-module which is free and
finitely generated over C∞[t] and C∞[τ ] (possibly of different ranks) such that there
exists a non-negative integer µ satisfying

(t− θ)µM ⊂ τM.

(ii) Morphisms of Anderson t-motives are given by morphisms of left C∞[t, τ ]-modules.
(iii) Let M1 and M2 be two Anderson t-modules. The tensor product of M1 and M2 is

the Anderson t-motive M1 ⊗C∞[t] M2 where τ acts diagonally.

Let m ∈ Matd×1(M) be a C∞[t]-basis for M and Q ∈ GLr(T) be such that

τ ·m = Qm.

We call M rigid analytically trivial if there exists Υ ∈ GLr(T) such that

Υ(1) = QΥ.

We also call Υ a rigid analytic trivialization of M .
Due to Anderson [1, Thm. 1], there exists an anti-equivalence of categories of Anderson

t-modules and Anderson t-motives. We briefly describe this functor now. Given an Anderson
t-module G = (Gd

a/C∞
, ϕ), there exists a unique Anderson t-motiveMG given by the group of

morphisms Gd
a/C∞

→ Ga/C∞ of C∞-algebraic groups. This group of morphisms is naturally

a C∞[τ ]-module and is isomorphic to Mat1×d(C∞[τ ]) as C∞[τ ]-modules. It is equipped with
a C∞[t, τ ]-module structure given by

cti ·m := c ◦m ◦ ϕθi , m ∈MG.

In what follows, we describe the Anderson t-motives corresponding to the Anderson t-
modules given in Example 2.2.

2.3.1. Anderson t-motive of Drinfeld modules. Let ϕ be the Drinfeld module of rank r given
as in (1.4). We define Mϕ := C∞[τ ] and equip it with the C∞[t]-module structure given by

cti · aτ j := caτ jϕθi , a, c ∈ C∞.

One can see that Mϕ forms a left C∞[t, τ ]-module, satisfying (t− θ)Mϕ ⊂ τMϕ, which is free
and finitely generated over C∞[t] and C∞[τ ]. We define the matrix

Θ :=



1
. . .

. . .

1
t−θ
kr

−k1
kr

. . . . . . −kr−1

kr

 ∈ GLr(T).



MELLIN TRANSFORM FORMULAS FOR DRINFELD MODULES 11

We choose m := [m1, . . . ,mr]
tr ∈ Matr×1(Mϕ) to be a C∞[t]-basis for Mϕ so that

τ ·m = Θm.

Observe that {m1} forms a C∞[τ ]-basis for Mϕ.
Let {λ1, . . . , λr} be an A-basis for the period lattice Λϕ. For any i ∈ {1, . . . , r}, we define

the Anderson generating function fi := sϕ(λi; t). Consider the matrix

(2.3) Υ :=


f1 · · · · · · fr
f
(1)
1 · · · · · · f

(1)
r

...
...

f
(r−1)
1 · · · · · · f

(r−1)
r

 ∈ Matr×r(T).

By [28, §4.2], we know that Υ ∈ GLr(T) and moreover it satisfies

Υ(1) = ΘΥ.

Hence Mϕ is rigid analytically trivial.
For later use, we also consider another C∞[t]-basis

cϕ := [cϕ1 , . . . , c
ϕ
r ]

tr := [k
(−1)
1 m1+k

(−1)
2 m2+ · · ·+k(−1)

r mr, k
(−2)
2 m1+k

(−2)
2 m2+ · · ·+k(−2)

r mr−1

, . . . , k
(1−r)
r−1 m1 + k(1−r)

r m2, k
(−r)
r m1]

tr ∈ Matr×1(Mϕ)

and note that

(2.4) τ · cϕ = Φtrcϕ

where

(2.5) Φ :=



1
. . .

. . .

1

t−θ

k
(−r)
r

−k
(−1)
1

k
(−r)
r

. . . . . . −k
(−(r−1))
r−1

k
(−r)
r


∈ GLr(T).

2.3.2. Anderson t-motive of the tensor powers of the Carlitz module. Let k ∈ Z≥1. We
consider the left C∞[t, τ ]-module

MC⊗k :=MC ⊗C∞[t] · · · ⊗C∞[t] MC = C∞[τ ]⊗C∞[t] · · · ⊗C∞[t] C∞[τ ]

so that τ acts diagonally. Let m1 be a basis for MC as a C∞[t]-module. Then m :=
m1 ⊗ · · · ⊗m1 is a C∞[t]-basis for MC⊗k so that

τm = (t− θ)km.

Moreover, the set {m, (t− θ)m, . . . , (t− θ)k−1m} forms a C∞[τ ]-basis for MC⊗k and hence it
is of dimension k over C∞[τ ]. In particular, MC⊗k

∼= Mat1×k(C∞)[τ ] as C∞[τ ]-modules.
We now fix a (q − 1)-st root of −θ and define the Anderson-Thakur element ωC by

(2.6) ωC := (−θ)1/(q−1)

∞∏
j=0

(
1− t

θqj

)−1

∈ T.

One can observe that (ωk
C)

(1) = (t− θ)kωk
C and hence MC⊗k is rigid analytically trivial.
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2.3.3. Anderson t-motive of the tensor product of Drinfeld modules with the tensor powers
of the Carlitz module. We consider the left C∞[t, τ ]-module

Mϕ⊗C⊗k :=Mϕ ⊗C∞[t] ⊗C∞[t]MC⊗k = C∞[τ ]⊗C∞[t] · · · ⊗C∞[t] C∞[τ ]

so that τ acts diagonally. Observe that (t− θ)k+1Mϕ⊗C⊗k ⊂ τMϕ⊗C⊗k . Moreover, Mϕ⊗C⊗k is
free and finitely generated over C∞[t] and C∞[τ ]. We consider a C∞[t]-basis m for Mϕ⊗C⊗k

given by m := [m1, . . . ,mr]
tr := [m1 ⊗ m, . . . ,mr ⊗ m]tr, where mi are the basis elements

from §2.3.1 and m is from §2.3.2. Note that

τ ·m = (t− θ)kΘm.

Let Υ̃ := ωk
CΥ ∈ GLr(T). Then it is easy to see that Υ̃(1) = (t− θ)kΘΥ̃ and hence Mϕ⊗C⊗k

is rigid analytically trivial.
We further define another C∞[t]-basis

c := [c1, . . . , cr]
tr := [cϕ1 ⊗m, . . . , cϕr ⊗m]tr.

Moreover, we note that

(2.7) τ · c = (t− θ)kΦtrc.

Lastly, we define a C∞[τ ]-basis

g := [g1, . . . , grk+1]
tr := [m1,m2, . . . ,mr, (t− θ)m1, (t− θ)m2, . . . , (t− θ)mr, . . . ,

(t− θ)k−1m1, (t− θ)k−1m2, . . . , (t− θ)k−1mr, (t− θ)km1]
tr.

One now sees that

t · g = ρθg

where ρθ is given as in Example 2.2(iii).

2.4. Dual t-motives. We define C∞[t, σ] := C∞[t][σ] to be the ring of polynomials of σ
with coefficients in C∞[t] subject to the condition

σf = f (−1)σ, f ∈ C∞[t].

We further define the ∗-operation on elements in C∞[τ ] by

g∗ :=
∑
i≥0

c
(−i)
i σi, g =

∑
i≥0

ciτ
i.

We extend this operation to elements in Matd(C∞)[τ ] by defining M∗ := ((m∗
µν))

tr for any
M = (mµν) ∈ Matd(C∞)[τ ].

Definition 2.5. (i) A dual t-motive N is a left C∞[t, σ]-module which is free and finitely
generated over C∞[t] and C∞[σ] such that there exists ℓ ∈ Z≥0 satisfying

(t− θ)ℓN ⊂ σN.

(ii) The morphisms of dual t-motives are given by left C∞[t, σ]-module homomorphisms.
(iii) The tensor product of dual t-motives N1 and N2 is defined to be the left C∞[t, σ]-

module N1 ⊗N2 := N1 ⊗C∞[t] N2 where σ acts diagonally.
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Let n ∈ Matr×1(N) be a C∞[t]-basis for N and Z ∈ GLr(T) be such that

σ · n = Zn.

We say that M is rigid analytically trivial if there exists Ψ ∈ GLr(T) such that

Ψ(−1) = ZΨ.

We further call Ψ a rigid analytic trivialization of N .
In an unpublished work of Anderson (see also [21, §2.5]), he showed the equivalence be-

tween the category of Anderson t-modules and the category of dual t-motives. Similar to the
case of Anderson t-motives, this result yields that for any Anderson t-moduleG = (Gd

a/C∞
, ϕ),

there exists a unique Anderson t-motive NG := Mat1×d(C∞[σ]) equipped with a C∞[t, τ ]-
module structure given by

cti · n := cnϕ∗
θi , n ∈ NG.

In what follows, we describe the dual t-motives corresponding to Anderson t-modules given
in Example 2.2.

2.4.1. Dual t-motive of Drinfeld modules. Let ϕ be a Drinfeld module given as in (1.4). We
define Nϕ to be the C∞[σ]-module C∞[σ] equipped with the C∞[t]-module action given by

cti · aσj := caσjϕ∗
θi , a, c ∈ C∞.

It is free and finitely generated over C∞[t] and C∞[σ] satisfying (t−θ)Nϕ ⊂ σNϕ. We choose

a C∞[t]-basis dϕ := [dϕ1 , . . . , d
ϕ
r ]

tr ∈ Matr×1(Nϕ) for Nϕ satisfying

(2.8) σ · dϕ = Φdϕ.

Moreover, {dϕ1} forms a C∞[σ]-basis for Nϕ.
Following the notation in [4, §3.3], set

(2.9) V :=



k1 k
(−1)
2 k

(−2)
3 . . . k

(1−r)
r

...
...

... . .
.

...
... k

(−2)
r

... k
(−1)
r

kr


∈ GLr(C∞)

and consider the matrix Ψ := V −1((Υ(1))tr)−1 ∈ GLr(T). Then, by Proposition 2.3, we
obtain (Υ(1))tr = ΥtrΘtr. Moreover, one has

(2.10) V (−1)Φ = ΘtrV.

Thus, we have Ψ(−1) = ΦΨ and hence Nϕ is rigid analytically trivial.

2.4.2. Dual t-motive of the tensor powers of the Carlitz module. Set

NC⊗k := NC ⊗C∞[t] · · · ⊗C∞[t] NC = C∞[σ]⊗C∞[t] · · · ⊗C∞[t] C∞[σ]

and equip it with the diagonal σ-action. Thus NC⊗k is a left C∞[t, σ]-module. One can
choose C∞[t]-basis n := dC1 ⊗ · · · dC1 for NC⊗k so that

σn = (t− θ)kn.
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On the other hand, the set {n, (t− θ)n, . . . , (t− θ)k−1n} forms a C∞[σ]-basis for NC⊗k and

hence NC⊗k
∼= Mat1×k(C∞)[σ]. Consider the element Ω := (ω

(1)
C )−1. It can be easily seen

that (Ωk)(−1) = (t− θ)kΩ and thus implies the rigid analytic triviality of NC⊗k .

2.4.3. Dual t-motive of the tensor product of Drinfeld modules with the tensor powers of the
Carlitz module. We set

Nϕ⊗C⊗k := Nϕ ⊗C∞[t] ⊗C∞[t]NC⊗k = C∞[σ]⊗C∞[t] · · · ⊗C∞[t] C∞[σ]

and equip it with the diagonal σ-action. It can be seen that Nϕ⊗C⊗k forms a left C∞[t, σ]-
module and it is also a free and finitely generated over C∞[t] and C∞[σ]. Moreover,

(t− θ)k+1Nϕ⊗C⊗k ⊂ σNϕ⊗C⊗k .

We consider the C∞[t]-basis for Nϕ⊗C⊗k given by d := [d1, . . . , dr] := [dϕ1 ⊗ n, . . . , dϕr ⊗ n]tr

for Nϕ⊗C⊗k . Note that

(2.11) σ · d = (t− θ)kΦd.

To see that Nϕ⊗C⊗k is rigid analytically trivial, we define the matrix Ψ̃ := ΩkΨ ∈ GLr(T)
and observe that Ψ̃(−1) = (t− θ)kΦΨ̃.

We set h̃r := 1 and for each i ∈ {1, . . . , r − 1}, we let

h̃i := k
(−1)
i+1 dϕ2 + k

(−2)
i+1 dϕ3 + · · ·+ k(−(r−i))

r dϕr−i+1.

Moreover, we consider the C∞[σ]-basis for Nϕ⊗C⊗k defined by

h := {h1, . . . , hrk+1} := [(t− θ)kh̃r ⊗ n, (t− θ)k−1h̃1 ⊗ n, . . . , (t− θ)k−1h̃r ⊗ n,

(t− θ)h̃1 ⊗ n, . . . , (t− θ)h̃r ⊗ n, h̃1 ⊗ n, . . . , h̃r ⊗ n]tr

and observe that
t · h = ρ∗θh.

2.5. Logarithms of Anderson t-modules. In this section we review the background and
some of the main theorems of [19] which gives a factorization theorem for the logarithm
function of a t-module. We state our first lemma which describes a particular choice of bases
for Anderson t-motives and dual t-motives.

Lemma 2.6. [19, Lem. 2.10] Let G be an Anderson t-module and MG (NG resp.) be the
corresponding Anderson t-motive (dual t-motive resp.).

(i) There exists a C∞[t]-basis {c1, . . . , cr} ({d1, . . . , dr} resp.) for MG (NG resp.) such
that

τ [c1, . . . , cr]
tr = Q[c1, . . . , cr]

tr

and
σ[d1, . . . , dr]

tr = Qtr[d1, . . . , dr]
tr

for some Q ∈ GLr(T).
(ii) There exists a C∞[τ ]-basis G := [g1, . . . , gd]

tr for NG and a C∞[σ]-basis H := [h1, . . . , hd]
tr

for NG such that
t · G = VG

and
t ·H = V∗H

for some V ∈ Matr×r(C∞)[τ ].
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Let N ∼= Mat1×r(C∞[t]) be a dual t-motive for some r ∈ Z≥1 and let h = {h1, . . . , hd} be
a C∞[σ]-basis. Any n ∈ N can be written as

n =
d∑

i=1

(
mi∑
j=0

αi,jσ
j

)
hi

for some αi,j ∈ C∞ and mi ∈ Z≥0. Then we define the map δN0 : N → Cd
∞ by

δN0 (n) :=

α0,1

...
α0,d

 .

Now let {d1, . . . , dr} be a C∞[t]-basis for N as in Lemma 2.6(i). We consider

Ñ := ⊕r
i=1C∞(t)di ∼= Mat1×r(C∞(t))

and for any ñ ∈ Ñ , write ñ =
∑d

i=1 aidi for some ai ∈ C∞(t). We define

(2.12) σ−1(ñ) := (Q−1)(1)

a1...
ar


(1)

.

Moreover, we consider Nθ := N ⊗C∞[t] Tθ. By [19, Prop. 2.8], there exists an extension of
δN0 -map to δN0 : Nθ → Cd

∞.

Remark 2.7. If n ∈ N , then one can write n =
∑r

i=0 aici for some ai ∈ C∞[t]. Since

det(Q) = (t − θ)ℓa for some ℓ ∈ Z≥1 and a ∈ C×
∞, σ−1(n) ∈ Ñ has only a pole at t = θq.

Thus, one can evaluate σ−j(n) at δN0 for any integer j. We refer the reader to [19, Prop.
2.18] for details on this extensions of δN0 .

We define another crucial map for our purposes. LetM ∼= Mat1×d(C∞)[τ ] be an Anderson
t-motive and fix z = (z1, . . . , zd)

tr ∈ Cd
∞. We define δM1,z :M → C∞ by

(2.13) δM1,z(m) := mz := m1(z1) + · · ·+md(zd), m = [m1, . . . ,md] ∈ Mat1×d(C∞)[τ ],

where we view τ as acting as the q-power Frobenius. We further define Mz to be the set
of elements (a1, . . . , ad)z where, for each i ∈ {1, . . . , d}, ai =

∑∞
j=0 ai,jτ

j ∈ C∞[[τ ]] satisfies

(a1,µτ
µ, . . . , ad,µτ

µ) z → 0 as µ → ∞. Then we extend the map δM1,z to Mz by defining

δM1,z :Mz → Cd
∞

δM1,z(m̃) := lim
µ→∞

δ1,z([a
µ
1 , . . . , a

µ
d ])

where m̃ =
[∑∞

j=0 a1,jτ
j, . . . ,

∑∞
j=0 ad,jτ

j
]
and aµi :=

∑µ
j=0 ai,jτ

j. Again, we refer the reader

to [19, Def. 2.19] for full details on this extension.

Example 2.8. Since the map δM1,z is central to the main formulas of our paper, we give
a short example showing how one computes the image of this map, at least in the case of
Carlitz (compare this calculation with the framework in [13, §6.5]). Using [19, (5.4)], for
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z ∈ C∞ inside the radius of convergence of the Carlitz logarithm, in (MC)z, we may write

−π̃Ω = 1 +
1

(θ − θq)
(t− θ) +

1

(θ − θq)(θ − θq2)
(t− θ)(t− θq) + . . .

= 1 +
1

ℓ1
τ(1) +

1

ℓ2
τ 2(1) + . . . ,

where 1/ℓi is the ith coefficient of the Carlitz logarithm (one can also compute this expansion
of π̃Ω directly using induction without relying on the machinery of [19]). We then have

δM1,z(−π̃Ω) = z +
1

ℓ1
zq +

1

ℓ2
zq

2

+ . . .

= logC(z),

which is consistent with [19, Cor. 5.7].

Let G = (Gd
a/C∞

, ϕ) be an Anderson t-module given as in (2.1). For each j ∈ {0, . . . , ℓ−1},
we set

(2.14) Θϕ,τℓ−j := A
(−j)
j+1 τ + · · ·+ A

(−j)
ℓ τ ℓ−j.

The following was one of the main theorems of [19] and gives an interpretation of the loga-
rithm function of an Anderson t-module in terms of a limit of evaluations of the motivic maps
δ□i given above. After substituting definitions, this formula becomes an infinite product of
matrices (or a finite sum of such terms), hence we call it a factorization of the logarithm.

Theorem 2.9. [19, Cor. 5.7(2)] Let z be an element in the domain of convergence of LogG
and let MG (NG resp.) be the Anderson t-motive (dual t-motive resp.) corresponding to G.
Let G and H be the C∞[τ ]-basis (C∞[σ]-basis resp.) of Anderson t-motive (dual t-motive
resp.) as in Lemma 2.6(ii) and let ei ∈ Matd×1(Fq) be the i-th unit vector. Then

LogG(z) = lim
n→∞

δMG
1,z

(
(t Idd −d[θ])−1

d∑
µ=1

ℓ−1∑
ν=0

δNG
0 (σν−n(hµ))τ

n(GtrΘtr
ϕ,τℓ−νeµ)

)
.

2.6. Tensor construction. Let G = (Gd
a/C∞

, ϕ) be an Anderson t-module given as in Defi-

nition 2.1. In this subsection, we detail a modified construction of the pairing G(x, y) found
in [19] which was used in the proof of Theorem 2.9, which will allow us to more easily analyze
the convergence of the quantities described in §3. Recall the bases G and H given in Lemma
2.6(ii). For x ∈ C∞[t, σ] and y ∈ C∞[t, τ ], define

(2.15) G⊗
n (x, y) :=

n∑
i=0

d∑
k=1

σ−i(x(hk))⊗C∞ τ i(y(gk))) ∈ ÑG ⊗MG.

We note that if we apply the map δN0 to the first coordinate of each simple tensor in (2.15),
then the resulting sum is in Cd

∞ ⊗M ∼= Md and we recover Gn(x, y) of [19, Def. 5.1]. In
fact, since δN0 is C∞-linear, this is equivalent to applying δN0 ⊗ 1 to the whole sum (2.15).

The pairing G⊗
n (x, y) has many similar properties to Gn(x, y) (detailed in [19, Prop. 5.4]).

We briefly discuss the properties of G⊗
n (x, y) here. For convenience we recall Definition [19,

5.3]:

Definition 2.10. For each j ∈ {0, . . . , ℓ− 1}, we define

Θϕ,σℓ−j := Aj+1τ + · · ·+ Aℓτ
ℓ−j,
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where the Ai are the coefficients of the t-module as in Definition 2.1

Proposition 2.11. Let x ∈ C∞[t, σ] and y ∈ C∞[t, τ ].

(1) For any c ∈ C∞ we have

G⊗
n (cx, y) = G⊗

n (x, cy).

(2) We have

G⊗
n (x, τy)−G⊗

n (σx, y) =
d∑

k=1

σ−n(xhk)⊗ τn+1(ygk)− σ(xhk)⊗ ygk,

and more generally for m < n and c ∈ C∞

G⊗
n (x, cτ

my)−G⊗
n (c

(−m)σmx, y) =
d∑

k=1

m−1∑
ℓ=0

σℓ−n(xhk)⊗ τn(c(−ℓ)τm−ℓygk)

− c(ℓ−m)σℓ−m(xhk)⊗ τ ℓ(ygk).

(3) We have

G⊗
n (1, t)−G⊗

n (t, 1) =
d∑

k=1

r−1∑
ℓ=0

σℓ−n(hk)⊗ τn
(
Θϕ,τr−ℓgk

)
−Θ∗

ϕ,σr−ℓhk ⊗ τ ℓgk.

Proof. Part (1) is a straightforward calculation. The first part of (2) follows because the
two terms being subtracted create a telescoping series, which leaves the highest and lowest
degree (in τ) terms after cancellation. The second part follows by using part (1), recalling
that aτ = τa(−1), and then repeatedly applying the first part of (2). Part (3) follows by
recalling from §2.3.1 and §2.4.1 that t acts as ϕθ on MG and as ϕ∗

θ on NG, then by applying
parts (1) and (2) to the individual terms of ϕθ and ϕ∗

θ. □

In what follows, we also obtain a factorization of G⊗
n (1, 1) similarly to [19, Thm. 5.4(3)].

Let us denote
G⊗

n := G⊗
n (1, 1).

Proposition 2.12. We have the following factorization of G⊗
n :

((1⊗ t)− (t⊗ 1))G⊗
n =

d∑
k=1

r−1∑
ℓ=0

σℓ−n(hk)⊗ τn
(
etrk Θϕ,τr−ℓG

)
− etrk Θ

∗
ϕ,σr−ℓH ⊗ τ ℓgk.

Proof. This proposition follows from Proposition 2.11(3) after noting that G⊗
n (1, t) = (1 ⊗

t)G⊗
n (1, 1), and that G⊗

n (t, 1) = (t⊗ 1)G⊗
n (1, 1). □

3. Logarithms of Drinfeld modules

Our goal in this section is to interpret the logarithms of Drinfeld modules in terms of
formulas investigated in [19]. First, we introduce the notion of fundamental periods. Let
ϕ be a Drinfeld module as in (1.4). For any positive integer n, consider the set ϕ[θn] of
θn-torsion points which consists of elements z ∈ C∞ such that ϕθn(z) = 0. By [24, Thm.
4.4], there exists a positive integer nϕ, depending on ϕ, and elements ξ1, . . . , ξr ∈ ϕ[θnϕ ] such
that λi := θnϕ logϕ(ξ), which we call a a fundamental period of ϕ for each 1 ≤ i ≤ r, forms
an A-basis for the period lattice Λϕ.
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Throughout this section, we fix a Drinfeld module ϕ given by

(3.1) ϕθ = θ + k1τ + · · ·+ krτ
r

so that |ki| ≤ 1 for each 1 ≤ i ≤ r − 1 and kr ∈ F×
q . It this case, by [24, Prop. 3.1], we have

nϕ = 1.
Let us further fix a basis {ξ1, . . . , ξr} for the Fq-vector space ϕ[θ] ([18, §4.5]).

3.1. The product formula for Υ. Consider

(3.2) B :=


ξ1 ξ2 . . . ξr
ξq1 ξq2 . . . ξqr
...

...
...

ξq
r−1

1 ξq
r−1

2 . . . ξq
r−1

r

 ∈ Matr×r(C∞).

Since ξ1, . . . , ξr are Fq-linearly independent and B is a Moore matrix, the inverse of B exists.
Further, we define certain quantities Bn(t) ∈ K(t) from [6, (6.4)] and refer the reader to [6,
§5,6] for full details. Let

Bn(t) :=
∑

S∈Pr(n)

r∏
i=1

∏
j∈Si

kq
j

i

t− θqi+j ,

where the sum is over so-called shadowed partitions (see [6, §5]). We comment that, by [5,
(6.5)], if we set logϕ :=

∑
n≥0 βnτ

n, then we have Bn(θ) = βn.
Observe, by the Newton polygon method, that each non-zero element in ϕ[θ] has norm

q1/(q
r−1). Let {λ1, . . . , λr} be a set of fundamental periods, forming an A-basis for Ker(expϕ),

and hence we define accordingly Υ ∈ GLr(T) given in (2.3). We also set F := B−1Θ−1B(1) ∈
GLr(T) and Πn := B

∏n
i=0 F

(n) ∈ GLr(T).
Khaochim and Papanikolas obtained a product formula for Υ as well as a certain expression

for the entries of Πn in terms of Bn which will later be essential for us to prove our main
results.

Theorem 3.1 (Khaochim and Papanikolas, [24, Prop. 4.3, Thm. 4.4]). The following
identities hold.

(i)

(Πn)ij =

ξj − t

t− θ

n−(i−1)∑
µ=0

Bµ(t)ξ
qµ

j

(i−1)

.

In particular, limn→∞(Πn)
(1)
ij exists with respect to the norm ∥·∥θ on Tθ.

(ii)

Υ = lim
n→∞

Πn = B

∞∏
n=0

F (n).

Recall the matrices Θ, Φ and V from §2. For each n ≥ 1, let us set

Pn := ((Φtr)−1)(1) · · · ((Φtr)−1)(n) ∈ GLr(T).

We further define

(3.3) M := V trB(1).
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By (2.10), we have

P
(−1)
n+1

= (Φtr)−1((Φtr)−1)(1) · · · ((Φtr)−1)(n)

= (V (−1))trΘ−1(Θ−1)(1) · · · (Θ−1)(n)((V −1)tr)(n)

= (V (−1))trB(B−1Θ−1B(1))(B−1Θ−1B(1))(1) · · · (B−1Θ−1B(1))(n)(B−1)(n+1)((V −1)tr)(n)

= (V (−1))trΠn(M
−1)(n).

(3.4)

Thus, by (3.4), we obtain

(3.5) Pn = (P(−1)
n )(1) = ((Φtr)−1((Φtr)−1)(1) · · · ((Φtr)−1)(n−1))(1) = V trΠ

(1)
n−1(M

−1)(n).

For each n ≥ 1, we further set Ψn := V −1((Π
(1)
n )tr)−1. Recall the invertible matrix Ψ from

§2.4.1 and observe, by Theorem 3.1, that

(3.6) Ψ = lim
n→∞

Ψn = V −1((Υ(1))tr)−1.

By taking the inverse of very left and right hand side of (3.4), we have

(3.7) Sn := (Φtr)(n)(Φtr)(n−1) · · · (Φtr) = M(n)Π−1
n ((V (−1))−1)tr = M(n)(Ψ(−1)

n )tr.

Thus, for any ñ ∈ Ñϕ (m̃ ∈ Mϕ resp.) given by ñ =
∑r

i=1 aid
ϕ
i (m̃ =

∑r
i=1 bic

ϕ
i resp.), using

(2.4), (2.8) and (2.12), we have

(3.8) σ−n(ñ) = Pn

a1...
ar


(n)

and τn(m̃) = [b1, . . . , br]
(n)Sn−1.

3.2. Tensor construction for Drinfeld modules. We use the bases described in §2.3.1
and §2.4.1. Let G = (Ga/C∞ , ϕ) where ϕ is as given in (3.1). In this case, the definition of
G⊗

n from (2.15) reduces to

(3.9) G⊗
n =

n∑
i=0

σ−i(dϕ1)⊗ τ i(cϕr ) ∈ Ñϕ ⊗Mϕ,

and Proposition 2.12 reduces to

((1⊗ t)− (t⊗ 1))G⊗
n =

r−1∑
ℓ=0

σℓ−n(dϕ1)⊗ τn
(
Θϕ,τr−ℓcϕr

)
−Θ∗

ϕ,σr−ℓ(d
ϕ
1)⊗ τ ℓ(cϕr )(3.10)

=
r−1∑
ℓ=0

σℓ−n(dϕ1)⊗ τn+1(cϕℓ+1)−
r−1∑
ℓ=0

σ(dϕℓ )⊗ τ ℓ(cϕr ),

where the equality in the second line follows from the definition of the basis cϕ in §2.3.1 and
Definition 2.10. Going forward we will denote γ :=

∑r−1
ℓ=0 σ(d

ϕ
ℓ ) ⊗ τ ℓ(cϕr ). This term has no

dependence on n and thus makes no contribution towards the convergence of the left hand
side, thus we will minimize the notation of these terms throughout the following discussion.

We now wish to move towards viewing these identities as living in rings of matrices over
Tate algebras. To this end, we identify Mϕ

∼= Mat1×r C∞[t] and identify Nϕ
∼= C∞[t]r using
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the bases described above. Applying the definition of the τ− and σ− action on these bases
detailed in (3.8), formula (3.10) becomes

(3.11) ((1⊗ t)− (t⊗ 1))G⊗
n =

r−1∑
ℓ=0

Pn−ℓe1 ⊗ etrℓ+1Sn − γ.

A short calculation shows that both of these (finite) sums are in Tr
θ ⊗C∞ Tr

θ.

Remark 3.2. We note that we write vectors to the left of the tensor as a column and vectors
to the right as a row in order to simplify notation in what comes next, namely, so that we
can multiply by r × r matrices on the left and on the right of such a simple tensor and it
is clear what that means. To avoid cumbersome notation, we will denote such elements as
living in Tr

θ ⊗C∞ Tr
θ rather than Tr

θ ⊗C∞ Mat1×r(Tθ).

Our immediate goal is to prove that the right hand side of (3.11) converges in some ring
of Tate algebras as n→ ∞.

Definition 3.3. Let c ∈ C×
∞. Recall the norm ∥·∥c on Tr

c from §2.2. We extend this norm
to simple tensors a⊗ b ∈ Tr

c ⊗C∞ Tr
c by setting

∥a⊗ b∥c = ∥a∥c · ∥b∥c,

then extending it to all Tr
c ⊗ Tr

c by taking the supremum over all sums involving simple
tensors. It follows trivially from the definition that this is in fact a non-archimedean (or
ultrametric) norm on Tr

c ⊗C∞ Tr
c. In fact, this is an example of a cross norm on the tensor

product of two Banach spaces (see [30, §6] for more details on cross norms). We then form

the completion of Tr
c ⊗ Tr

c under this norm, and denote the resulting space T̂r
c ⊗ Tr

c.

Lemma 3.4. For an, bn ∈ Tr
c, the sum of simple tensors

∞∑
n=0

an ⊗ bn

converges in T̂r
c ⊗ Tr

c if and only if ∥an ⊗ bn∥c → 0 as n→ ∞.

Proof. First, note that the sum
∑∞

i=0 an⊗bn trivially diverges if ∥an⊗bn∥c does not converge
to 0. On the other hand, if the individual simple tensors do converge to 0 in norm, then the
convergence of the series follows from the ultrametric triangle inequality. □

3.3. The element αn. Our main goal in this subsection is to define an element αn ∈ Tr⊗Tr

for each n ∈ Z≥1 which will be useful to interpret the RHS of (3.11) in terms of matrices
Πn and Ψn in (3.10). Recall the matrix B from (3.2) and set D := det(B) and write
B−1 = 1

D
(cji)ij where cji is the (j, i)-cofactor of B. By the construction of B, for each

1 ≤ ℓ ≤ r, we obtain

(3.12) c1ℓ =

{
−cqrℓ if r is even

cqrℓ if r is odd.
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Since ξ1, . . . , ξr are elements in ϕ[θ], we have

(3.13) B(1) =



0 1
. . .

. . .

1

− θ
kr

−k1
kr

. . . . . . −kr−1

kr

B.

This relation shows that

(3.14) Dq =

{
θD
kr

if r is even

− θD
kr

if r is odd.

Hence, for each m ≥ 0, we have

(3.15) (B−1)(m) =

 k1+q+···+qm−1

r

θ1+q+···+qm−1
D
(cq

m

ji )ij if r is even

(−1)m k1+q+···+qm−1

r

θ1+q+···+qm−1
D
(cq

m

ji )ij if r is odd.

For any positive integer n, in what follows, we define αn, a quantity related to the right-

hand side of (3.11) without the γ term and after factoring out Π
(1)
n−1 on the left and (Ψ

(−1)
n )tr

on the right,

αn := (M−1)(n−(r−1))e1 ⊗ etrr M
(n) + F (n−(r−2))(M−1)(n−(r−2))e1 ⊗ etrr−1M

(n)+

F (n−(r−2))F (n−(r−3))(M−1)(n−(r−3))e1 ⊗ etrr−2M
(n) + · · ·+

F (n−(r−2)) · · ·F (n)(M−1)(n)e1 ⊗ etr1 M
(n) ∈ Tr ⊗ Tr.

The precise relationship between (3.11) and αn will be given in (3.23). We further define
another quantity

(3.16) β := (M−1)(−1)e1 ⊗ etrr M
(r−2) +M−1e1 ⊗ etrr−1M

(r−2) + (M−1)(1)e1 ⊗ etrr−2M
(r−2)

+ · · ·+ (M−1)(r−2)e1 ⊗ etr1 M
(r−2)

=
1

k
(−1)
r

B−1er ⊗ k(−1)
r etr1 B

(r−1) +
1

kr
(B−1)(1)er ⊗ (kr−1, kr, 0, . . . , 0)B

(r−1)+

1

k
(1)
r

(B−1)(2)er ⊗ (kqr−2, k
q
r−1, k

q
r , 0, . . . , 0)B

(r−1) + · · ·+

1

k
(r−2)
r

(B−1)(r−1)er ⊗ (kq
r−2

1 , . . . , kq
r−2

r−1 , k
qr−2

r )B(r−1) ∈ Tr ⊗ Tr.

Remark 3.5. Important Notational Comment: Since cϕ (dϕ resp.) forms a C∞[t]-basis

forMϕ (for Nϕ resp.), we conclude that {dϕi ⊗ cϕj } for 1 ≤ i, j ≤ r forms a C∞[t]⊗C∞[t]-basis
for Mϕ ⊗C∞ Nϕ. We then tensor this with T and view T ⊗C∞ (Mϕ ⊗C∞ Nϕ) ∼= Tr ⊗C∞ Tr

as Matr×r(T) with a T-basis given by {dϕi ⊗ cϕj } as above. Thus, there exists a bijection
f : Tr ⊗ Tr → Matr×r(T) sending each

g =
r∑

i,j=1

bijd
ϕ
i ⊗ cϕj ∈ Tr ⊗ Tr
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to f(g) := (bij) ∈ Matr×r(T). However, we are especially interested in using this notation in
the case of an element, such as β given above, with β ∈ Cr

∞ ⊗ Cr
∞ ∈ Tr ⊗ Tr. In particular

we have

f

(
r∑

i=1

dϕi ⊗ cϕi

)
= Idr .

Throughout the remainder of this paper we will often omit the map f from our notation
when it does not cause confusion. For example, we will view αn and β as matrices over T
and C∞, respectively.

Recall the matrix M defined in (3.3). The next lemma will be crucial to determine the
limiting behavior of αn.

Lemma 3.6. For each 2 ≤ j ≤ r and a matrix J ∈ Matr×r(T) whose each entry has norm
less than 1, we have

lim
n→∞

J(M−1)(n−(r−j))e1 ⊗ etrr−(j−1)M
(n) = 0.

Proof. For each 1 ≤ i ≤ r − 1, let

Fi := (B−1)(i)er ⊗ (kq
i−1

r−i , . . . , k
qi−1

r−1 , kr, 0, . . . , 0)B
(r−1).

Since, by assumption, |ki| ≤ 1 and kr ∈ F×
q , after a simple calculation and using Lemma

3.4, it suffices to show that logq(∥Fi∥) ≤ 0 for each i. Note, from (3.14), that |D| = q1/(q−1).
Finally, for any 1 ≤ µ ≤ r, since ξµ is a θ-torsion point, one obtains

kq
i−1

r−i ξ
qr−1

µ + · · ·+ kq
i−1

r−1 ξ
qr+i−2

µ + krξ
qr+i−1

µ = −θqi−1

ξq
i−1

µ − kq
i−1

1 ξq
i

µ − · · · − kq
i−1

r−i−1ξ
qr−2

µ .

Since |ki| ≤ 1, we see that

logq(|k
qi−1

r−i ξ
qr−1

µ + · · ·+ kq
i−1

r−1 ξ
qr+i−2

µ + krξ
qr+i−1

µ |) ≤ qi−1 +
qi−1

qr − 1
.

Similarly, a direct calculation implies that, for each 1 ≤ ν ≤ r, |crν | is bounded by

q1+q+···+qr−2
/(qr − 1). Combining all these facts above, we obtain

logq(∥Fi∥) ≤ − qi

q − 1
+
qi + · · ·+ qi+r−2

qr − 1
+ qi−1 +

qi−1

qr − 1

= −
(
1 + q + · · ·+ qi−1 +

1

q − 1

)
+ 1 + q + · · ·+ qi−2

+
1 + q + · · ·+ qi−2 + qi + · · ·+ qr−1

qr − 1
+ qi−1 +

qi−1

qr − 1

= 0

as desired. □

By [24, Thm. 3.29], we have F = Idr +F̃ where each entry of F̃ ∈ Matr×r(T) has norm
less than 1. Thus, by choosing J = F̃ in Lemma 3.6 and using the definition of αn and β,
we have

(3.17) α := lim
n→∞

αn = lim
n→∞

β(n−(r−2))

if and only if limn→∞ β(n−(r−2)) exists. The main goal of this section is to prove the existence
of this limit and hence, as a consequence, our next theorem.
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Theorem 3.7. In Tr ⊗ Tr, we have

α =
r∑

i=1

dϕi ⊗ cϕi .

In other words, via the identification in Remark 3.5, α = Idr.

3.4. The proof of Theorem 3.7. The proof of Theorem 3.7 occupies §3.4.1 and §3.4.2.
Our main strategy, as it will be elaborated in what follows, is to show that β = Idr. Note,
as it is used in the proof of Lemma 3.6, that since ξ1, . . . , ξr are elements in ϕ[θ], we have

(3.18) kiξ
qi

j + · · ·+ krξ
qr

j = −θξj − k1ξ
q
j − · · · − ki−1ξ

qi−1

j

for any 2 ≤ i ≤ r and 1 ≤ j ≤ r.

3.4.1. Even rank case. Let us set r = 2n for some positive integer n. By using (3.14), (3.15),
(3.18) as well as the definition of β given in (3.16), we obtain

β =
1

D



c(2n)1

k
(−1)
2n

cq(2n)1 . . . cq
2n−1

(2n)1

c(2n)2

k
(−1)
2n

cq(2n)2 . . . cq
2n−1

(2n)2

...
...

...
c(2n)(2n)

k
(−1)
2n

cq(2n)(2n) . . . cq
2n−1

(2n)(2n)





0 . . . . . . . . . 0 k
(−1)
2n

−1 −k1
θ

−k2
θ

. . . −k2n−2

θ
0

−k2n
θ

−k2nk
q
1

θ1+q −k2nk
q
2n−3

θ

...

−k1+q
2n

θ1+q

. . .
...

...
. . . −k1+···+q2n−4

2n kq
2n−3

1

θ1+···+q2n−3

...

−k1+···+q2n−3

2n

θ1+···+q2n−3 0


B.

Let us set B := βB−1. Our goal is to show that B = B−1. Firstly, by (3.12) and a simple
calculation, the first and last column of B and B−1 are equal. Hence B = B−1 when n = 1.
Now assume that n > 1. Note that (3.13) also implies
(3.19)

(B(1))−1



0 1
. . .

. . .

1

− θ
k2n

− k1
k2n

. . . . . . −k2n−1

k2n

 = B−1 =
1

D


−cq(2n)1 c21 . . . c(2n−1)1 c(2n)1
−cq(2n)2 c22 . . . c(2n−1)2 c(2n)2

...
...

...
...

−cq(2n)(2n) c2(2n) . . . c(2n−1)(2n) c(2n)(2n)

 .

For each 2 ≤ m ≤ 2n− 1 and 1 ≤ i ≤ 2n, we claim that

(3.20)

cmi = −
(
cq

m

(2n)ik
1+q+···+qm−2

2n

θ1+q+···+qm−2 +
kq

m−2

1 cq
m−1

(2n)i k
1+q+···+qm−3

2n

θ1+q+···+qm−2 +
kq

m−3

2 cq
m−2

(2n)i k
1+q+···+qm−4

2n

θ1+q+···+qm−3 + · · ·+

kqm−2c
q2

(2n)ik2n

θ1+q
+
km−1c

q
(2n)i

θ

)
.



24 OĞUZ GEZMİŞ AND NATHAN GREEN

When m = 2, we have c2i = −
cq

2

(2n)i
k2n

θ
−

k1c
q
(2n)i

θ
. Assume that it holds for m. Note, by (3.14)

and (3.19), we have

c(m+1)i =
cqmik2n
θ

−
kmc

q
(2n+1)i

θ
.

Using the induction hypothesis, we obtain

c(m+1)i =
cmik2n
θ

−
kmc

q
(2n+1)i

θ

= −
(
cq

m+1

(2n)i k
1+q+···+qm−1

2n

θ1+q+···+qm−1 +
kq

m−1

1 cq
m

(2n)ik
1+q+···+qm−2

2n

θ1+q+···+qm−1 +
kq

m−2

2 cq
m−1

(2n)i k
1+q+···+qm−3

2n

θ1+q+···+qm−2 + · · ·+

kq
2

m−2c
q3

(2n)ik
1+q
2n

θ1+q+q2
+
kqm−1c

q2

(2n)ik2n

θ1+q
+
kmc

q
(2n+1)i

θ

)

which proves our claim. Note that the right hand side of (3.20) is the (i,m)-entry of B. This
immediately implies that B = B−1 and hence we have β = Id2n . Furthermore, by (3.17), we

obtain α =
∑2n

i=1 d
ϕ
i ⊗ cϕi .

3.4.2. Odd rank case. Let us set r = 2n+1 for some positive integer n. Using (3.14), (3.15),
(3.18) and the definition of β given in (3.16), we see that

β =
1

D



c(2n+1)1

k
(−1)
2n+1

cq(2n+1)1 . . . cq
2n

(2n+1)1

c(2n+1)2

k
(−1)
2n+1

cq(2n+1)2 . . . cq
2n

(2n+1)2

...
...

...
c(2n+1)(2n+1)

k
(−1)
2n+1

cq(2n+1)(2n+1) . . . cq
2n

(2n+1)(2n+1)



×



0 . . . . . . . . . 0 k
(−1)
2n+1

1 k1
θ

k2
θ

. . . k2n−1

θ
0

−k2n+1

θ
−k2n+1k

q
1

θ1+q −k2n+1k2n−2

θ1+q

...
. . .

. . .
...

...
k1+···+q2n−3

2n+1

θ1+···+q2n−3

k1+···+q2n−3

2n+1 kq
2n−3

1

θ1+···+q2n−2

...

−k1+···+q2n−2

2n+1

θ1+···+q2n−2 0


B.

Consider C := βB−1. Our goal is to show that C = B−1. Firstly, by (3.12) and a simple
calculation, the first and last column of C and B−1 are equal. On the other hand, similar to
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(3.19), observe that, by (3.13), (3.12) and (3.14), we have

(3.21)
k2n+1

θD


−cq

2

(2n+1)1 −cq21 . . . −cq(2n)1 −cq(2n+1)1

−cq
2

(2n+1)2 −c22 . . . −cq(2n)2 −cq(2n+1)2

...
...

...
...

−cq
2

(2n+1)(2n+1) −cq2(2n+1) . . . −cq(2n)(2n+1) −cq(2n+1)(2n+1)

×



0 1
. . .

. . .

1
− θ

k2n+1
− k1

k2n+1
. . . . . . − k2n

k2n+1

 =
1

D


cq(2n+1)1 c21 . . . c(2n)1 c(2n+1)1

cq(2n+1)2 c22 . . . c(2n)2 c(2n+1)2

...
...

...
...

cq(2n+1)(2n) c2(2n+1) . . . c(2n)(2n+1) c(2n+1)(2n+1)

 .

For each 2 ≤ m ≤ 2n and 1 ≤ i ≤ 2n+ 1, we claim that

(3.22) cmi =
(−1)m−1cq

m

(2n+1)ik
1+q+···+qm−2

2n+1

θ1+q+···+qm−2 +
(−1)mkq

m−2

1 cq
m−1

(2n+1)ik
1+q+···+qm−3

2n+1

θ1+q+···+qm−2

+
(−1)m+1kq

m−3

2 cq
m−2

(2n+1)ik
1+q+···+qm−4

2n+1

θ1+q+···+qm−3 + · · ·+
(−1)2m−4kq

2

m−3c
q3

(2n+1)ik
1+q
2n+1

θ1+q+q2

+
(−1)2m−3kqm−2c

q2

(2n+1)ik2n+1

θ1+q
+

(−1)2m−2km−1c
q
(2n+1)i

θ
.

When m = 2, we have

c2i = −
cq

2

(2n+1)ik2n+1

θ
+
k1c

q
(2n+1)i

θ
.

Assume that it holds for m. Note, by (3.21), we have

c(m+1)i = −cqmik2n+1

θ
+
kmc

q
(2n+1)i

θ
.

By the induction hypothesis, we have

c(m+1)i = −cmi

θ
+
kmc

q
(2n+1)i

θ

=
(−1)mcq

m+1

(2n+1)ik
1+q+···+qm−1

2n+1

θ1+q+···+qm−1 +
(−1)m+1kq

m−1

1 cq
m

(2n+1)ik
1+q+···+qm−2

2n+1

θ1+q+···+qm−1

+
(−1)m+2kq

m−2

2 cq
m−1

(2n+1)ik
1+q+···+qm−3

2n+1

θ1+q+···+qm−2 + · · ·+
(−1)2m−3kq

3

m−3c
q4

(2n+1)ik
1+q+q2

2n+1

θ1+q+q3

+
(−1)2m−2kq

2

m−2c
q3

(2n+1)ik
1+q
2n+1

θ1+q+q2
+

(−1)2m−1kqm−1c
q2

(2n+1)ik2n+1

θ1+q
+

(−1)2mkmc
q
(2n+1)i

θ

which proves our claim. It is easy to see that the right hand side of (3.22) is the (i,m)-entry
of C. Therefore C = B−1 and thus we have β = Id2n+1 . Furthermore (3.17) now yields

α =
∑2n+1

i=1 cϕi ⊗ dϕi as desired.
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3.5. Formulas for the logarithms. Recall the identities given in (3.5) and (3.7). Observe,
by (3.8) and (3.11), that

((1⊗ t)− (t⊗ 1))G⊗
n + γ =

r−1∑
ℓ=0

Pn−ℓe1 ⊗ etrℓ+1Sn

= V trΠ
(1)
n−r(M

−1)(n−(r−1))e1 ⊗ etrr M
(n)(Ψ(−1)

n )tr

+ V trΠ
(1)
n−(r−1)(M

−1)(n−(r−2))e1 ⊗ etrr−1M
(n)(Ψ(−1)

n )tr + · · ·

+ V trΠ
(1)
n−1(M

−1)(n)e1 ⊗ etr1 M
(n)(Ψ(−1)

n )tr

= V trΠ
(1)
n−rαn(Ψ

(−1)
n )tr

(3.23)

where the last equality follows from Π
(1)
n−ℓ = Π

(1)
n−rF

(n−(r−2)) · · ·F (n−(ℓ−1)). Hence, using The-
orem 3.1, Lemma 3.4 and Theorem 3.7 yields the following result.

Theorem 3.8. In Tr
θ ⊗ Tr, we have

lim
n→∞

(
((1⊗ t)− (t⊗ 1))G⊗

n + γ
)
= V trΥ(1)α(Ψtr)(−1).

We are now ready to prove the main result of this section.

Theorem 3.9. Let z ∈ C∞ be an element in the domain of convergence of logϕ. Then, we
have

logϕ(z) = δ
Mϕ

1,z

(
1

t− θ
etr1 V

trΥ
(1)
|t=θ(Ψ

tr)(−1)

)
.

Proof. Let

((1⊗ t)− (t⊗ 1))G⊗
n + γ =

r−1∑
ℓ=0

σℓ−n(dϕ1)⊗ τn
(
Θϕ,τr−ℓcϕr

)

=

ζ11...
ζ1r

⊗ [η11, . . . , η1r] + · · ·+

ζr1...
ζrr

⊗ [ηr1, . . . , ηrr] ∈ Tr ⊗ Tr.

By Theorem 3.1(i) and (3.8), we see that for each 1 ≤ i, j ≤ r, ζij is well-defined at t = θ.

Moreover, by the definition of δ
Nϕ

0 -map, we have

(3.24)
r−1∑
ℓ=0

δ
Nϕ

0 (σℓ−n(dϕ1))τ
n(Θϕ,τr−ℓcϕr )

= ((ζ11)|t=θη11 + · · ·+ (ζr1)|t=θηr1) c
ϕ
1 + · · ·+ ((ζ11)|t=θη1r + · · ·+ (ζr1)|t=θηrr) c

ϕ
r .
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Finally, by Theorem 2.9, Theorem 3.8 and (3.24), we obtain

logϕ(z) = lim
n→∞

δ
Mϕ

1,z

(
1

t− θ

r−1∑
ν=0

δ
Nϕ

0 (σ−n(dϕ1))τ
n(Θϕ,τℓ−ν cϕr )

)

= δ
Mϕ

1,z

(
1

t− θ
lim
n→∞

(
r−1∑
ν=0

δ
Nϕ

0 (σ−n(dϕ1))τ
n(Θϕ,τℓ−ν cϕr )

))

= δ
Mϕ

1,z

(
1

t− θ
etr1 V

trΥ
(1)
|t=θα(Ψ

tr)(−1)

)
and the result follows from the identification of α = Idr given in Theorem 3.7. □

By specializing the value z at certain prescribed points, we may conclude that the left-
hand side of Theorem 3.9 evaluates to a Taelman L-value (see [31] for more details). We
further evaluate terms on the right-hand side to show that it includes periods and exponential
functions which also indicates that our next result may be interpreted as a Mellin transform
formula for Taelman L-values.

Recall the fundamental periods λ1, . . . , λr ∈ C×
∞ of ϕ defined at beginning of the present

section and fi = sϕ(λi; t) introduced in §2.3.1.

Corollary 3.10. Let ϕ be a Drinfeld module as in Theorem 1.1 so that each ki ∈ F×
q and

let π = (λ1, . . . , λr) be a vector of fundamental periods of ϕ. Then we have

L(ϕ∨, 0) = δ
Mϕ

1,z

(
1

θ − t
π(Ψtr)(−1)

)
.

Proof. Let us set m := {x ∈ K∞ | |x| < 1}. Then we have K∞ = m ⊕ A. Note that, by

[24, Cor. 4.5], the radius of convergence of logϕ is q
qr

qr−1 . Hence, logϕ(1) is well-defined and
m is in the domain of convergence of logϕ. Moreover, by [5, Thm. 3.3], one can calculate the
logarithm coefficients of ϕ, which yields the fact that logϕ(m) ⊆ m.
To proceed, we define the A-module H(ϕ/A) given by the quotient

H(ϕ/A) :=
ϕ(K∞)

expϕ(K∞) + ϕ(A)
.

Here, by ϕ(K∞) and ϕ(A), we mean the A-modules K∞ and A equipped with the A-
module structure induced from ϕ. Since expϕ is the formal inverse of logϕ, we now see
that expϕ(K∞) ⊇ m. Thus, expϕ(K∞) + ϕ(A) ⊇ ϕ(K∞), implying that H(ϕ/A) is trivial.
On the other hand, if we set U(ϕ/A) := {u ∈ K∞ | expϕ(u) ∈ A}, by [9, Thm. 1.10], we
know that U(ϕ/A) is an A-module of rank one. Indeed, since the norm of logϕ(1), being
equal to 1, is minimal among the elements of U(ϕ/A), we obtain that U(ϕ/A) = A logϕ(1).
Thus, by [31, Rem. 5, Thm. 1] (see also [7, §3]), we obtain L(ϕ∨, 0) = logϕ(1).

On the other hand, observe that etr1 V
tr = (k1, . . . , kr). Then, we find that for 1 ≤ i ≤ r,

the i-th entry of etr1 V
trΥ(1) is given by

k1f
(1)
i + k2f

(2)
i + · · ·+ krf

(r)
i = (t− θ)fi,
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by Proposition 2.3. Therefore evaluating this at t = θ gives Resθ fi which equals −λi by [4,
(3.4.3)]. Putting this all together gives

etr1 V
trΥ

(1)
t=θ = −π.

The result then follows from Theorem 3.9. □

Remark 3.11. At the present, we do not know if our formulas provide a connection between
Drinfeld modular forms and L-series. However, there are some hints in this direction provided
by the case of the Carlitz module. In this setting, our formulas give

δM1,z(−π̃Ω) = ζA(1).

In seeking to connect the LHS of this formula with a Drinfeld modular form, we are inspired
to write Ω in terms of the commonly used Drinfeld modular form uniformizer, u(z) :=
1/ expC(π̃z). We then write

1/Ω(−1) = ωC = expC

(
π̃

θ − t

)
=

∞∑
i=0

expC

(
π̃

θi+1

)
ti.

Thus the reciprocal of Ω(−1) can be written as a sum of u(z) evaluated at certain powers of θ.
This construction is somewhat forced, and seems unlikely to lead to a meaningful connection
with Drinfeld modular forms in our opinion. More natural is to do the following. Recall the
adjoint of the Carlitz module, C∗

θ (z) = θz + z1/q (see [18, §3.7]). It comes equipped with an
exponential function exp∗

C(z) which satisfies

θ exp∗
C(z) = exp∗

C(C
∗
θ (z)).

Formally, C∗ also has a logarithm series log∗C , which is the formal (fractional) power series
inverse of exp∗

C , which satisfies

C∗
t (log

∗
C(z)) = log∗C(θz).

However, this construction produces a power series with 0 radius of convergence! If we had a
way to rigorously construct the function log∗C , it should produce a function with a free rank
1 period generated by an element π∗, and we would use this to define

g(t) = log∗C

(
π∗

θ − t

)
,

and we would have that both g(t) and Ω satisfy

tg(t) = C∗
θ (g(t)), tΩ = C∗

θ (Ω).

Thus the two functions are equal up to normalization. Finally, we use this identification to
rewrite our main theorem

δM1,z(−π̃Ω) = δM1,z(−π̃
∞∑
i=0

log∗C(π
∗θ−i−1)ti).

We anticipate that there seems to be a more natural connection between the logarithm
function of the adjoint Carlitz module log∗C (see [18, §3.7]) and Drinfeld modular forms.
However, we are unsure how to make this connection rigorous, so this is a topic for future
study.
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4. Logarithms of tensor product of Drinfeld modules with the tensor
powers of the Carlitz module

Throughout this section, we fix a positive integer k ≥ 1 and let ϕ be a Drinfeld module
given by

ϕθ = θ + k1τ + · · ·+ krτ
r.

We further emphasize that unlike §3, we do not require any conditions on ϕ. Hence, in this
case, unlike the situation in §3, nϕ may not be equal to one.

We examine the case where our Anderson t-module is chosen to be ϕ⊗C⊗k = (Grk+1
a/C∞

, ρ)

detailed in Example 2.2(iii). We remind the reader of the bases described in §2.3.3 and
§2.4.3.

Consider the matrix

T := ρtrθ =



θ

r(k − 1)︷ ︸︸ ︷
0 . . . 0 τ 0 . . . 0 τk

(−1)
1

. . .
. . .

...
. . .

. . . τk
(−1)
r−1

. . . τ τk
(−1)
r

1
. . . 0

. . .
. . .

...
. . .

. . .
...

. . .
. . . 0

1 θ



.

Thus, we have t · g = Ttrg and t · h = (T∗)trh. In this case, we write

Θρ,τ =



0 . . . . . . . . . . . . 0
...
0 . . . . . . . . . . . . 0
τ

. . .

τ
k1τ . . . kr−1τ krτ 0 . . . 0


where we note that the first r(k − 1) + 1-rows of Θρ,τ are zero. Furthermore, the formula
given in (2.15) for the t-module ρ, which we denote as G⊗

k,n reduces to

G⊗
k,n =

n∑
i=0

rk+1∑
j=1

σ−i(hj)⊗ τ i(gj).

By Proposition 2.12, we obtain the following.
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Proposition 4.1. We have

(4.1) (1⊗ t− t⊗ 1)G⊗
k,n = σ−n(hr(k−1)+2)⊗ τn+1(g1) + · · ·+ σ−n(hrk)⊗ τn+1(gr−1)

+ σ−n(hrk+1)⊗ τn+1(c1)−
r+1∑
j=2

σ(hr(k−1)+j)⊗ gj−1 −
r∑

j=1

k
(−1)
j σ(hrk+1)⊗ gj.

4.1. The element ηn. Our goal in this subsection is similar to what we aim in §3.3. More
precisely, we define an element ηn ∈ Tr ⊗ Tr for each n ∈ Z≥1 which we use to interpret
((1⊗ t)− (t⊗ 1))G⊗

k,n ∈ Tr ⊗ Tr in terms of matrices Πn and Ψn in (4.5). Let us set

Ṽ :=


0 k

(−1)
2 k

(−2)
3 . . . k

(1−r)
r

...
...

... . .
.

...
... k

(−2)
r

0 k
(−1)
r

1

 ∈ GLr(C∞).

Then we have

(4.2) Ṽ


d1
...
...
dr

 =


hr(k−1)+2

...

...
hrk+1

 and [g1, . . . , gr−1, c1] = [c1, . . . , cr](Ṽ
(−1))−1.

Let ei ∈ Matr×1(Fq) be the i-th unit vector. For any positive integer n, we now consider

ηn := (M−1)(n)(Ṽ tr)(n)e1 ⊗ etr1 (((Ṽ
(−1))−1)tr)(n+1)M(n) + · · ·+

(M−1)(n)(Ṽ tr)(n)er ⊗ etrr (((Ṽ
(−1))−1)tr)(n+1)M(n) ∈ Tr ⊗ Tr.

Observe that

ηn = (M−1)(n)(Ṽ tr)(n)(e1 ⊗ etr1 + · · ·+ er ⊗ etrr )((Ṽ
−1)tr)(n)M(n).

Thus, since e1 ⊗ etr1 + · · ·+ er ⊗ etrr = ηn =
∑r

i=1 di ⊗ ci, we finally obtain our next theorem.

Theorem 4.2. We have

η := lim
n→∞

ηn =
r∑

i=1

di ⊗ ci.

In particular, via the identification in Remark 3.5, η = Idr.

To simplify the notation, from now on, we set Nρ := Nϕ⊗C⊗k and Mρ :=Mϕ⊗C⊗k .

4.2. The structure of δ
Nρ

0 -map. In what follows, we analyze the behavior of δ
Nρ

0 which
is necessary to prove our main result. In particular, we define an explicit isomorphism of

C∞[t, σ]-modules which allows us to compute the values of the map δ
Nρ

0 . For more details
on such construction, we refer the reader to [12, §A.2].
Consider the C∞[t, σ]-module N := Mat1×(rk+1)(C∞[σ]) whose C∞[t]-module structure is

given by

cti · n := cnρ∗θi , c ∈ C∞, n ∈ N.
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For any 1 ≤ i ≤ rk + 1, let fi ∈ Mat1×(rk+1)(Fq) be the i-th unit vector. For any 1 ≤ i ≤ r,
we set ni := fr(k−1)+i+1 ∈ N. Note, as it is already observed in [12, (83)], that we have
(t − θ)knr = f1 and for 1 ≤ µ ≤ k, one obtains (t − θ)k−µni = fr(µ−1)+i+1. Furthermore, a
direct calculation implies that the set {n1, . . . , nr} forms a C∞[t]-basis for N.
There exists a C∞[t, σ]-module isomorphism ι : Nρ → N given by

ι

(
r∑

j=1

rjhr(k−1)+j+1

)
:= r1 · n1 + · · ·+ rr · nr, r1, . . . , rr ∈ C∞[t].

We further define certain elements vij ∈ C∞ so that

Ṽ −1 =


v1r

v2(r−1) 0

. .
. ...

. .
. ...

vr1 · · · · · · vr(r−1) 0

 .

This implies, by (4.2), that ι(d1) = v1rnr and for 2 ≤ ℓ ≤ r, we have

ι(dℓ) = vℓ(r−ℓ+1)nr−ℓ+1 + · · ·+ vℓ(r−1)nr−1.

Thus, by the definition of δ
Nρ

0 , if n =
∑r

j=1

(∑mj

ℓ=0 aj,ℓ(t− θ)ℓ
)
dj ∈ Nρ, then

(4.3) δ
Nρ

0 (n) =



∗
...
∗

ar0vr1∑r
j=r−1 aj0vj2

...∑r
j=2 aj0vj(r−1)

a10v1r


.

Since (t − θ)k+1Nρ ⊂ σNρ, the map δ
Nρ

0 may be calculated similarly at σ−ℓ(n) for any
non-negative integer ℓ.

4.3. Formulas for the logarithms. Recall the matrices Pn and Sn from §3. Since, the
Drinfeld module ϕ is arbitrary, the matrix B chosen in [24, Thm. 4] is different than we
have defined in §3.1 (see [24, Thm. 3.29]). However, since our calculations in (3.5) and (3.7)
are not affected by this change, we still have

Pn = (P(−1)
n )(1) = ((Φtr)−1((Φtr)−1)(1) · · · ((Φtr)−1)(n−1))(1) = V trΠ

(1)
n−1(M

−1)(n)

and
Sn := (Φtr)(n)(Φtr)(n−1) · · · (Φtr) = M(n)Π−1

n ((V (−1))−1)tr = M(n)(Ψ(−1)
n )tr.

For each k ≥ 1, we further set

P̃k
n := (t− θq)−k · · · (t− θq

n

)−kPn

and
S̃k
n := (t− θ)k(t− θq)k · · · (t− θq

n

)kSn.
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Thus, for any ñ ∈ Ñρ (m̃ ∈ Mρ resp.) given by ñ =
∑r

i=1 aidi (m̃ =
∑r

i=1 bici resp.), using
(2.7), (2.11) and (2.12), we have

(4.4) σ−n(ñ) = P̃k
n

a1...
ar


(n)

and τn(m̃) = [b1, . . . , br]
(n)S̃k

n−1.

Put γ̃ :=
∑r+1

j=2 σ(hr(k−1)+j)⊗ gj−1 +
∑r

j=1 k
(−1)
j σ(hrk+1)⊗ gj. Then, by using (4.1) as well

as the definition of σ− and τ− action on Ñρ and Mρ respectively, we have

(1⊗ t− t⊗ 1)G⊗
k,n + γ̃

= σ−n(hr(k−1)+2)⊗ τn+1(g1) + · · ·+ σ−n(hrk)⊗ τn+1(gr−1) + σ−n(hrk+1)⊗ τn+1(c1)

=
rn+1∑
µ=1

σ−n(hµ)τ
n(gtrΘtr

ρ,τ fµ)

= P̃k
n(Ṽ

tr)(n)e1 ⊗ etr1 (((Ṽ
(−1))−1)tr)(n+1)S̃k

n + · · ·+ P̃k
n(Ṽ

tr)(n)er ⊗ etrr (((Ṽ
(−1))−1)tr)(n+1)S̃k

n

= (t− θq)−k · · · (t− θq
n

)−kV trΠ
(1)
n−1ηn(Ψ

(−1)
n )tr(t− θ)k(t− θq)k · · · (t− θq

n

)k

= (−1)k

(
(−θ)q/(q−1)

n∏
i=1

(
1− t

θqi

)−1
)k

V trΠ
(1)
n−1ηn(Ψ

(−1)
n )tr

(
(−θ)−1/(q−1)

n∏
i=0

(
1− t

θqi

))k

.

(4.5)

Using Theorem 3.1, (3.6) and Theorem 4.2, we can now easily obtain the following result.

Theorem 4.3. We have

lim
n→∞

(
(1⊗ t− t⊗ 1)G⊗

k,n + γ̃
)
= lim

n→∞

(
rn+1∑
µ=1

σ−n(hµ)τ
n(gtrΘtr

ρ,τ fµ)

)
= (−1)kV trΥ̃(1)(Ψ̃tr)(−1).

Before we state the main result of this section, we define ẽ1 := v1re
tr
1 and for 2 ≤ j ≤ r,

we set

ẽj :=
r∑

i=j

vi(r−(j−1))e
tr
i .

Recall the projection pi : Crk+1
∞ → C∞ onto the i-th coordinate as well as the entire functions

Fτ i : C∞ → C∞ for each 1 ≤ i ≤ r − 1 defined in §3. Recall also the fundamental periods
λ1, . . . , λr of ϕ defined in §3.

Theorem 4.4. Let z ∈ Crk+1
∞ be an element in the domain of convergence of Logρ. Then,

for any 1 ≤ j ≤ r, we have

prk+1−(j−1)(Logρ(z)) = δ
Mρ

1,z

(
(−1)k

t− θ
ẽjV

tr(Υ̃(1))|t=θ(Ψ̃
tr)(−1)

)
= δ

Mρ

1,z

(
π̃k

ωk
C(t− θ)

ẽjV
tr(Υ(1))|t=θ(Ψ

tr)(−1)

)
.
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In particular, we have

prk+1−(j−1)(Logρ(z)) =δ
Mρ

1,z

(
π̃k

ωk
C(θ−t)

(λ1, . . . , λr)(Ψ
tr)(−1)

)
if j = 1

δ
Mρ

1,z

(
π̃k

ωk
C(t−θ)

(Fτr−(j−1)(λ1), . . . , Fτr−(j−1)(λr))(Ψ
tr)(−1)

)
if 2 ≤ j ≤ r

.

Proof. Let

(1⊗ t− t⊗ 1)G⊗
k,n + γ̃ =

r−1∑
ℓ=1

σ−n(hr(k−1)+ℓ+1)⊗ τn+1 (gℓ) + σ−n(hrk+1)⊗ τn+1(c1)

=
rn+1∑
µ=1

σ−n(hµ)τ
n(gtrΘtr

ρ,τ fµ)

=

ξ11...
ξ1r

⊗ [ψ11, . . . , ψ1r] + · · ·+

ξr1...
ξrr

⊗ [ψr1, . . . , ψrr] ∈ Tr ⊗ Tr.

Again by Theorem 3.1(i) and (3.8), we see that for each 1 ≤ i, j ≤ r, ξij is well-defined at

t = θ. Moreover, by the definition of δ
Nρ

0 -map given in (4.3), we have

(4.6)
rn+1∑
µ=1

δ
Nρ

0 (σ−n(hµ))τ
n(gtrΘtr

ρ,τ fµ) =

∗
...
∗

(ξ1j)|t=θvj1∑r
j=r−1(ξ1j)|t=θvj2

...∑r
j=2(ξ1j)|t=θvj(r−1)

(ξ11)|t=θv1r


(ψ11c1+· · ·+ψ1rcr)+· · ·+



∗
...
∗

(ξrj)|t=θvj1∑r
j=r−1(ξrj)|t=θvj2

...∑r
j=2(ξrj)|t=θvj(r−1)

(ξr1)|t=θv1r


(ψr1c1+· · ·+ψrrcr).

Thus, similar to the situation in Theorem 3.9, the first assertion follows from Theorem 2.9,
Theorem 4.3 and (4.6). The second assertion mainly follows from the definition of Υ̃ and Ψ̃.
For the last assertion, observe that the identity (Ṽ −1)trṼ tr = Idr implies

ẽjV
tr =

{
(k1, . . . , kr) if j = 1

etrr−(j−1) if 2 ≤ j ≤ r.

Thus, the desired result follows from the first assertion and [4, (3.4.3), (3.4.5)]. □

Let ϕ be a Drinfeld module of rank 2 given as in (1.4) such that k1, k2 ∈ Fq. In what
follows, we briefly explain how our formulas in Theorem 1.5 are related to special values of
Goss L-function of ϕ defined in (1.6). Let us consider the Drinfeld module ϕ̃ given by

ϕ̃θ := θ − k1k
−1
2 τ + k−1

2 τ 2.
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By [11, Rem. 5.6], we know that L(ϕ, 1) = L(ϕ̃∨, 0). Now, for k ≥ 1, let zi ∈ Mat(2k+1)×1(Fq)
be the i-th unit vector. Using [11, Thm. 5.9], we have

L(ϕ, k + 1) = det

[
p2k(Logρ(z2k)) p2k(Logρ(z2k+1))
p2k+1(Logρ(z2k)) p2k+1(Logρ(z2k+1))

]
.

Set ρ̃ := ϕ̃⊗ C⊗k. Thus, one can obtain the following corollary of Theorem 4.4.

Corollary 4.5. Let k and zi for i = 1, 2 be as above. We have

L(ϕ, k + 1) =

det

δMρ̃

1,z2k

(
π̃k

ωk
C(t−θ)

(F̃τ (λ1), F̃τ (λ2))(Ψ
tr
ϕ̃
)(−1)

)
δ
Mρ̃

1,z2k+1

(
π̃k

ωk
C(t−θ)

(F̃τ (λ1), F̃τ (λ2))(Ψ
tr
ϕ̃
)(−1)

)
δ
Mρ̃

1,z2k

(
π̃k

ωk
C(t−θ)

(−λ1,−λ2)(Ψtr
ϕ̃
)(−1)

)
δ
Mρ̃

1,z2k+1

(
π̃k

ωk
C(t−θ)

(−λ1,−λ2)(Ψtr
ϕ̃
)(−1)

)  .
where Ψϕ̃ is the matrix defined as in (1.5) with respect to ϕ̃ and F̃ : C∞ → C∞ is the unique
entire function satisfying

F̃τ (θz)− θF̃τ (z) = expϕ̃(z)
q

for all z ∈ C∞.
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