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II.  FLUID STATICS 
 
 
 
From a force analysis on a triangular fluid element at rest, the following three  
concepts are easily developed: 
For a continuous, hydrostatic, shear free fluid:  

1.  Pressure is constant along a horizontal plane, 
2.  Pressure at a point is independent of orientation, 
3. Pressure change in any direction is proportional to the fluid density, 
     local g, and vertical change in depth. 

 
These concepts are key to the solution of problems in fluid statics and lead to the 
following: 

1. Two points at the same depth in a static fluid have the same pressure. 
2. The orientation of a surface has no bearing on the pressure at a point 

in a static fluid. 
3. Vertical depth is a key dimension in determining pressure change in a 

static fluid. 
 

 
If we were to conduct a more general force analysis on a fluid in motion with constant 
density and viscosity, we would obtain the following: 

 

    ∇ P = ρ g − a { } + µ ∇ 2V  
 

Thus the pressure change in fluid in general depends on: 

effects of fluid statics (ρ g),  Ch. II 

inertial effects (ρ a),  Ch. III 

viscous effects  ( µ∇ 2 V  )  Chs VI & VII 

 
Note:  For problems involving the effects of both  (1)  fluid statics and  

(2) inertial effects, it is the net    
" g − " a   acceleration vector that controls  

both the magnitude and direction of the pressure gradient. 
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This equation can be simplified for a fluid at rest (ie., no inertial or viscous 
effects) to yield: 

 

    

∇ p = ρ g 

∂ p
∂ x

= 0 ;
∂ p
∂ y

= 0 ;
∂ p
∂z 

=
dp
dz 

= −ρ g

P2 − P1 = − ρ g d Z
1

2

∫
 

 
 

It is appropriate at this point to review the differences between absolute, gage, 
and vacuum pressure.  These differences are illustrated in Fig. 2.3 (shown below) 
and are based on the following definitions: 
 

• absolute pressure - Pressure measured relative to absolute zero. 
• gage pressure  - Pressure > Patm measured relative to Patm 
• vacuum pressure - Pressure < Patm measured relative to Patm 
• Patm  -  local absolute pressure due to the local atmosphere only. 

 standard Patm at sea level = 1atm = 101.3 kPa = 2116 lbf/ft2 
 

P (kPa)

Patm
Local atmospheric pressure
e.g at 1000 m Patm≈  90 kPa
= 0 Pa gage  =  0 Pa vacuum

Pressure above atmospheric
e.g  P = 120 kPa absolute
   or  P = 30 kPa gage

P (relative to Patm)
= Pgage = 30 kPa gage

0
Absolute zero, perfect vacuum
P(abs) = 0, P(vac) = 90kPa, P(gage) = - 90 kPa

Pressure below atmospheric
e.g. P = 50 kPa abs

P(relative to Patm)
= P(vac) = 40 kPa

P(abs) = 50 kPa

Fig. 2.3 Illustration of absolute, gage, and vacuum pressure  
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Hydrostatic Pressure in Liquids 
 
For liquids and incompressible fluids, the previous integral expression for P2 - P1 
integrates to 
 

P1 – P2 = -ρg (Z2 – Z1) 
 

Note:   
 

Z2 – Z1 is positive for Z2 above Z1.   
but 

P2 – P1 is negative for Z2 above Z1. 
 

We can now define a new fluid 
parameter: 

γ = ρg ≡ specific weight of the fluid 

2 P
1

P
2

x

y

z

Free surface
Pressure = Pa

h = Z  -  Z
2 1

Z

Z

1

 

 

 
With this, the previous equation becomes (for an incompressible, static fluid) 

 

 P2 – P1 = - γ (Z2 – Z1) 

The most common application of this result is that of manometry. 

 

Consider the U-tube, multi- 
fluid manometer shown on 
the right.   
If we first label all 
intermediate points between 
A & a, we can write for the 
overall pressure change 
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PA - Pa = (PA- P1) + (P1 - P2) + (P2 - Pa ) 
 

This equation was obtained by adding and subtracting each intermediate pressure.  
The total pressure difference is now expressed in terms of a series of intermediate 
pressure differences.  Substituting the previous result for static pressure difference, 
we obtain 

 

PA - PB = - ρ g(ZA- Z1) – ρ g (Z1 – Z2) – ρ g (Z2 - ZB ) 
 

Again note:   Z positive up and ZA > Z1  ,  Z1 < Z2  ,  Z2 < Za . 
 

 
In general, follow the following steps when analyzing manometry problems: 

 

1. On the manometer schematic, label points on each end of the manometer 
and at each intermediate point where there is a fluid-fluid interface, 
e.g. A - 1 - 2 - B. 

2. Express the overall pressure difference in terms of appropriate 
intermediate pressure differences. 

PA - PB = (PA - P1)  +  (P1 - P2)  + (P2 - PB) 

3. Express each intermediate pressure difference in terms of an appropriate 
product of specific weight (or ρ g) * elevations change ( and watch the 
signs). 

PA - PB = -γ (zA - z1)  + -γ (z1 - z2)  + -γ (z2 - zB) 

 
 

 

When developing a solution for manometer problems, take care to: 
1. Include all pressure changes. 

2. Use correct ∆Z and γ with each fluid. 

3. Use correct signs with ∆ Z.  If pressure difference is expressed as  
PA – P1, the elevation change should be written as ZA – Z1. 

4. Watch units. 
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Manometer Example: 
 
 

Given the indicated manometer, 
determine the gage pressure at A.  Pa = 
101.3 kPa.  The fluid at A is Meriam red 
oil no. 3. 

ρgw = 9790 N/m3 

ρg A = S.G.*ρgw = 0.83*9790 N/m3 

ρg A = 8126 N/m3 

ρgair = 11.8 N/m3 

1

2

a

A

1

10 cm
18 cm

S.G. = .83

H  0
2

 

 
 

With the indicated points labeled on the manometer, we can write 
 

PA - Pa  = PA (gage)  = (PA- P1) + (P1 – P2) + (P2 - Pa ) 
 

 
Substituting the manometer expression for a static fluid, we obtain 
 

PA (gage) = - ρgA(zA- z1) – ρgw(z1 – z2) – ρga(z2 - za ) 
 

 
Neglect the contribution due to the air column.  Substituting values, we obtain 
 
PA (gage) = - 8126 N/m3 * 0.10 m – 9790 N/m3 * -0.18  = 949.6 N/m2  Ans 
  
 
Note why:  (zA- z1) = 0.10 m   and   (z1 – z2) = -0.18 m, & we did not use Pa 
 
 
Review the text examples for manometry. 
 
 
See Table 2.1 for values of specific weight, γ, in both B.G. and S.I. units. 
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Hydrostatic Pressure in Gases 
 
Since gases are compressible, density is a non-constant variable in the previous 
expression for dP/dz.  Assuming the gas is an ideal gas, we can write 
 

d P
d z

= −ρ g = −
P

RT
g or

d P
P1

2
∫ = ln

P2

P1
= −

g
R

d z
T1

2
∫  

 
For an isothermal atmosphere with T = To, this integrates to 
 

P2 = P1 exp −
g z2 − z1( )

RTo

 

 
 

 

 
  

 
 
 
Up to an altitude of approximately 36,000ft (l l,000 m), the mean atmospheric 
temperature decreases nearly linearly and can be represented by 
 
 T ≈ To - B z where   B  is the lapse rate 
 
The following values are assumed to apply for air from sea level to 36,000 ft: 
 
 To = 518.69˚R =  288.16˚K   (15 ˚C) 
 B = 0.003566˚R/ft  =  0.650˚K/m 
 
 
Substituting the linear temperature variation into the previous equation and 
integrating we obtain 
 

P = Pa 1 −
Bz
To

 
  

 
  

g / RB( )
where

g
RB

= 5.26 for air( ) 
 
 and  R  =  287 m2/(s2 ˚K) 
 
 
Review example 2.2 in the text. 
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Hydrostatic Forces on Plane Surfaces 
 

Consider a plane surface 
of arbitrary shape and 
orientation, submerged in 
a static fluid as shown: 
 
If  P  represents the local 
pressure at any point on 
the surface and h the depth 
of fluid above any point 
on the surface, from basic 
physics we can easily 
show that 

  
 
the net hydrostatic force on a plane surface is given by (see text for development): 

 
 F = PdA

A
∫ = Pcg A  

  
Thus, basic physics says that the hydrostatic force is a distributed load equal to the 
integral of the local pressure force over the area.  This is equivalent to the following: 
 

The hydrostatic force on one side of a plane surface submerged in a static 
fluid equals the product of the fluid pressure at the centroid of the surface 
times the surface area in contact with the fluid. 
 

Also:  Since pressure acts normal to a surface, the direction of the resultant force will 
always be normal to the surface. 
 
Note: In most cases, since it is the net hydrostatic force that is desired and the 
contribution of atmospheric pressure Pa will act on both sides of a surface, the result 
of atmospheric pressure Pa will cancel and the net force is obtained by 
 

   

F = ρ gh cgA

F = PcgA  
 
Pcg is now the gage pressure at the centroid of the area in contact with the fluid. 
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Therefore, to obtain the net hydrostatic force F on a plane surface: 
 

  1. Determine depth of centroid hcg for the area in contact with the 
fluid. 

  2. Determine the (gage) pressure at the centroid Pcg. 
  3. Calculate    F = PcgA. 

 
The following page shows the centroid, and other geometric properties of several 
common areas. 
 
It is noted that care must be taken when dealing with layered fluids.  The procedure 
essentially requires that the force on the part of the plane area in each individual layer 
of fluid must be determined separately for each layer using the steps listed above. 
 
We must now determine the effective point of application of  F.  This is commonly 
called the “center of pressure - cp” of the hydrostatic force.  
 
Note:  This is not necessarily the same as the  c.g. 
 
Define an  x – y  coordinate system whose origin is at  the centroid, c.g, of the area. 
 
The location of the resultant force is determined by integrating the moment of the 
distributed fluid load on the surface about each axis and equating this to the moment 
of the resultant force about that axis.  Therefore, for the moment about the  x  axis: 
 

 
F y cp = y P d

A
∫ A

 
 
Applying a procedure similar to that used previously to determine the resultant force, 
and using the definition (see text for detailed development),  we obtain 
 

   
Ycp = −

ρgsinθ I xx

Pcg A
≤ 0

  
 

where:   Ixx  is  defined as the  Moment of Inertia,  or 
 

 the   ∫  2nd moment of the area  
 
Therefore, the resultant force will always act at a distance  ycp  below the centroid of 
the surface ( except for the special case of  sin θ = 0 ).
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a

PROPERTIES OF PLANE SECTIONS

Geometry Centroid
Moment of

Inertia
I x x

Product of
Inertia

I x  y
Area

b
1

h

b

b

L

y

x

L

2R

b

L

b

y

x

Fluid Specific Weight

Seawater

Glycerin

Mercury

Carbon

.0752

57.3

62.4

49.2

11.8

8,996

9,790

7,733

64.0

78.7

846.

99.1

10,050

12,360

133,100

15,570

0

0

0

h
0

y

x

y

x

x

y

Ry

x

y

x

s

R

Air

Oil

Water

Ethyl

31bf /ft N /m3

bL3

12
b L⋅

b + b 1( )
h

2

a =
4 R

3 π
π

16
−

4

9π
R

4




1

8
−

4

9 π
R

4





πR 2

4

a =
L

3

bL3

36

b b − 2s( ) L2

72
1

2
b ⋅ L

b
3 ,

L
3

bL3

36
−

b 2L2

72

b ⋅ L

2

πR 2

2
R

4 π
8

−
8

9 π


0 ,a =

4R

3π

πR 4

4
0, 0 πR 2

b
2 ,

L
2

a
)

=
h b + 2b1(
3 b + b1( )

)3
b

2
+ 4bb 1 + b 1

2(
36 b + b

1
( )

N /m331bf/ft
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Proceeding in a similar manner for the  x  location, and defining Ixy = product of 
inertia, we obtain 

   
X

cp = −
ρgsinθ I

xy

P
cg

A  
 

where Xcp can be either positive or negative since  Ixy  can be either positive or 
negative. 
 
Note: For areas with a vertical plane of symmetry through the centroid, i.e. the  y - 
axis (e.g. squares, circles, isosceles triangles, etc.), the center of pressure is located 
directly below the centroid along the plane of symmetry, i.e.,  Xcp = 0. 
 

Key Points:  The values Xcp and Ycp are both measured with respect to the 
centroid of the area in contact with the fluid.  

 
  Xcp and Ycp are both measured in the inclined plane of the 

area;   
i.e., Ycp is not necessarily a vertical dimension, unless θ = 90o. 

 
 
Special Case:  For most problems where (1) we have a single, homogeneous fluid  
(i.e. not applicable to layers of multiple fluids) and (2) the surface pressure is 
atmospheric, the fluid specific weight  γ  cancels in the equation for Ycp and Xcp 
and we have the following simplified expressions: 
 

   F = ρ g h cg A  
 

   
Ycp = −

I xx sinθ
hcgA

Xcp = −
Ixy sinθ

hcgA  
 
However, for problems where we have either (1)  multiple fluid layers, or  (2)  a 
container with surface pressurization > Patm , these simplifications do not occur 
and the original, basic expressions for F , Ycp , and Xcp  must be used; i.e., take 
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care to use the approximate expressions only for cases where they apply.  The 
basic equations always work. 
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Summary: 
 

1. The resultant force is determined from the product of the pressure 
at the centroid of the surface times the area in contact with the 
fluid. 

2. The centroid is used to determine the magnitude of the force.  This 
is not the location of the resultant force. 

3. The location of the resultant force will be at the center of pressure  
which will be at a location Ycp below the centroid and Xcp as 
specified previously. 

4. Xcp = 0 for areas with a vertical plane of symmetry through the c.g. 
 
 
Example 2.5 
 
Given:  Gate,  5 ft wide 
Hinged at B 
Holds seawater as shown 
 
Find:   
a.  Net hydrostatic force on gate
b.  Horizontal force at wall - A 
c.  Hinge reactions - B 
 
 8’

θ

Seawater

• c.g.

hc.g.

A

B

64 lbf/ft3

15’

6’

9’

 
 
 
 

a.  By geometry:   θ  =  tan-1 (6/8)  =  36.87o          Neglect Patm 
 
Since the plate is rectangular, hcg = 9 ft + 3ft = 12 ft      A = 10 x 5 = 50 ft2 
 
Pcg  =  γ hcg =  64 lbf/ft3 * 12 ft  =  768 lbf/ft2 
 

∴  Fp =  Pcg A  =  768 lbf/ft2 * 50 ft2  =  38,400 lbf     
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b. Horizontal Reaction at A 
 Must first find the location, c.p., for Fp 

 
 

ycp = −ρ gsinθ Ixx
Pcg A = − Ixx sinθ

hcg A
 

 
For a rectangular wall: 
 
Ixx = bh3/12  
 
Ixx = 5 * 103/12 = 417 ft4 
 
Note:  The relevant area is a 

rectangle, not a triangle. 
 

 
 

θ

•
c.g.•

c.p.Bx

Bz

P

Fw

8 ft

6 ft

yc.p.θ

 

 
Note: Do not overlook the hinged reactions at B. 
 

 ycp = −
417 ft 4 ⋅0.6
12 ft ⋅50 ft2 = −0.417 ft  below  c.g. 

 
 xcp = 0  due to symmetry 
 
 
 
 M B∑ = 0 
 
 5 − 0.417( )⋅ 38,400 − 6 P = 0  
 
 P = 29,330 lbf    ←←←← 

 

θ

•
c.g.•

c.p.Bx

Bz

P

Fw

8 ft

6 ft

y
c.p.θ
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c. Fx∑ =0, Bx + Fsinθ − P= 0 
 
  Bx   +  38,400*0.6 - 29,330  =  0 
 
  Bx  =  6290 lbf  →→→→ 
 
 

 Fz∑ =0, Bz − Fcosθ =0 
 
  Bz  =  38,400 * 0.8  =  30,720 lbf     ↑↑↑↑  
 
 
Note:  Show the direction of all forces in final answers. 
 
 
 
Summary:  To find net hydrostatic force on a plane surface: 
 
 1. Find area in contact with fluid. 
 2. Locate centroid of that area. 
 3. Find hydrostatic pressure Pcg at centroid,  

typically  = γ γ γ γ hcg   (generally neglect Patm ). 
 4. Find force F = Pcg  A. 
 5. The location will not be at the c.g., but at a distance ycp 

below the centroid.  ycp is in the plane of the area.  
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Plane Surfaces in Layered Fluids 
 
For plane surfaces in layered fluids, the part of the surface in each fluid layer must 
essentially be worked as a separate problem.  That is, for each layer:  
1.) Identify the area of the plate in contact with each layer, 
2.) Locate the c.g. for the part of the plate in each layer and the pressure at the c.g., 
and  
3.  Calculate the force on each layered element using F1 = Pc.g1• A1 .   
Repeat for each layer. 
Use the usual procedure for finding the location of the force for each layer. 
 
 

 
 
Review all text examples for forces on plane surfaces. 
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Forces on Curved Surfaces 
 

Since this class of surface is curved, the 
direction of the force is different at each 
location on the surface. 

Therefore, we will evaluate the x and y 
components of net hydrostatic force 
separately. 
 
Consider curved surface, a-b.  Force 
balances in x & y directions yield 
 

Fh = FH  

Fv = Wair +  W1  +  W2  
 
 
From this force balance, the basic rules for determining the horizontal and vertical 
component of forces on a curved surface in a static fluid can be summarized as 
follows: 
 
Horizontal Component, Fh 

The horizontal component of force on a curved surface equals the force on 
the plane area formed by the projection of the curved surface onto a 
vertical plane normal to the component. 

 
 

 

The horizontal force will act 
through the c.p. (not the centroid) 
of the projected area. 

 
b

a

cp

hcg

Fh

ycp

a’

b’

Projected vertical
plane

Curved
surface
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Therefore, to determine the horizontal component of force on a curved surface in a 
hydrostatic fluid: 
 

 1. Project the curved surface into the appropriate vertical plane. 
 2. Perform all further calculations on the vertical plane. 
 3. Determine the location of the centroid - c.g. of the vertical plane. 

 4. Determine the depth of the centroid - hcg  of the vertical plane. 

 5. Determine the pressure - Pcg  = ρ g hcg  at the centroid of the 
vertical plane. 

 6. Calculate  Fh = Pcg A, where A is the area of the projection of the 
curved surface into the vertical plane, ie. the area of the vertical 
plane. 

 7. The location of  Fh  is through the center of pressure of the 
vertical plane, not the centroid. 

 
Get the picture? All elements of the analysis are performed with the 

vertical plane.  The original curved surface is important 
only as it is used to define the projected vertical plane. 

 
Vertical Component - Fv 
 

The vertical component of force on a curved surface equals the weight of 
the effective column of fluid necessary to cause the pressure on the 
surface. 

 
The use of the words effective column of fluid is important in that there may not 
always actually be fluid directly above the surface. (See graphic that follows.) 
 
 
This effective column of fluid is specified by identifying the column of fluid 
that would be required to cause the pressure at each location on the surface. 
 
Thus, to identify the effective volume - Veff: 
 

   1. Identify the curved surface in contact with the fluid. 
   2. Identify the pressure at each point on the curved surface. 
   3. Identify the height of fluid required to develop the pressure. 
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   4. These collective heights combine to form Veff. 

b

aVeff P

P
P

 
Fluid above the surface 

a

b

Veff

P
P P

fluid

 

No fluid actually above surface 
 
These two examples show two typical cases where this concept is used to 
determine Veff. 
 
 
The vertical force acts vertically through the centroid (center of mass) of the 
effective column of fluid.  The vertical direction will be the direction of the 
vertical components of the pressure forces. 
 
Therefore, to determine the vertical component of force on a curved surface in a 
hydrostatic fluid: 
 

 1. Identify the effective column of fluid necessary to cause the fluid 
pressure on the surface. 

 2. Determine the volume of the effective column of fluid. 
 3. Calculate the weight of the effective column of fluid - Fv = ρgVeff. 
 4. The location of Fv is through the centroid of Veff. 

 
 
Finding the Location of the Centroid 
 
A second problem associated with the topic of curved surfaces is that of finding 
the location of the centroid of Veff. 
 
Recall: 
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Centroid = the location where a point area, volume, or mass can be place to yield 
the same first moment of the distributed area, volume, or mass, e.g. 

  xcgV1 = xdV
V1

∫  

 
This principle can also be used to determine the location of the centroid of 
complex geometries. 
 

For example: 

If   Veff  =   V1   +   V2 
 
then 

xcgVeff  =   x1V1   +   x2V2 
 
or for the second geometry 
 

VT =  V1   +   Veff 
 

xTVT =  x1V1   +   xcgVeff 
 

b

a

2V

V1

 
 

a

b

V1

Veff

fluid

 
 
Note:  In the figures shown above, each of the  x  values would be specified 
relative to a vertical axis through  b  since the cg of the quarter circle is most 
easily specified relative to this axis. 
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Example: 
 
Gate AB holds back 15 ft of water.  
Neglecting the weight of the gate, 
determine the magnitude (per unit 
width) and location of the 
hydrostatic forces on the gate and 
the resisting moment about B. 
 

•

•

15 ft

A

B

Water
HF

FV

Width -  W

 
 

a.  Horizontal component γ  = ρg = 62.4 lbf/ft3 
 
Rule:  Project the curved surface into 
the vertical plane.  Locate the centroid 
of the projected area.  Find the pressure 
at the centroid of the vertical projection.  
F = Pcg  Ap 
Note:  All calculations are done with 
the projected area.  The curved 
surface is not used at all in the 
analysis. 

•

•
A

B

a

b

h cg
Pcg

 
 

 
 
The curved surface projects onto plane  a - b  and results in a rectangle,  
 (not a quarter circle)  15 ft x W.  For this rectangle: 
 
 

hcg = 7.5, Pcg = γhcg  = 62.4 lbf/ft3 * 7.5 ft  = 468 lbf/ft2 
 
 

Fh = Pcg A = 468 lbf/ft2 * 15 ft*W=  7020 W  lbf per ft of width  
 
 

Location:  Ixx = bh3/12  =  W * 153 /12 = 281.25 W ft4 
 

ycp = − Ixx sinθ
hcg A

= −281.25W ft4 sin90o

7.5 ft15W ft2 = −2.5 ft
 

The location is 2.5 ft 
below the c.g. or 10 ft 
below the surface, 5 ft 
above the bottom.   
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b.  Vertical force: 
 
 

Rule:  Fv equals the weight of the 
effective column of fluid above the 
curved surface (shown by the dashed 
diagonal lines). 

A
•

c.g.

C

B

•

b
Fv

•  
 

 
Q:  What is the effective volume of fluid above the surface? 
 What volume of fluid would result in the actual pressure distribution on the 
curved surface? 
 

Vol = Vol A - B - C 
 

Vrec = Vqc + VABC, VABC = Vrec - Vqc 
 

VABC = Veff  = 152 W - π 152/4*W  =  48.29 W ft3 

Fv = ρg Veff  = 62.4 lbf/ft3 * 48.29 ft3 = 3013 lbf  per ft of width  
 

Note: Fv is directed upward even though the effective volume is above the surface. 
 
 
c. What is the location? 
 

Rule:  Fv will act through the 
centroid of the effective volume 
causing the force. 
 
 

A
•

c.g.

C

B

•

b
Fv

•  
 
 
We need the centroid of volume A-B-C.       How do we obtain this centroid? 
 
 
Use the concept which is the basis of the centroid, the  “first moment of an area.” 
Since:  Arec  =  Aqc  + AABC Mrec  =  Mqc  +  MABC MABC  =  Mrec  -  Mqc 
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Note:  We are taking moments about the left side of the figure, ie., point b. WHY? 
 

(The c.g. of the quarter circle is known to be at 4 R/ 3 π  w.r.t.  b.) 
 

xcg A  = xrec Arec - xqc Aqc  

 

xcg {152  -  π*152/4}  =  7.5*152 - {4*15/3/π}* π*152/4 
 

 xcg = 11.65 ft    { distance to rt. of  b  to the centroid } 
Q:  Do we need a   y  location?   Why? 
 
 
d.  Calculate the moment about  B 

needed for equilibrium. 
 

M B∑ = 0   clockwise positive. 
 
MB +5Fh + 15−xv( )Fv = 0 

A
•

c.g.

C

B

•

b •

FH

Fv

MB

 
 
 
M B + 5 ⋅ 7020W + 15 −11.65( )⋅ 3013W = 0 
 
MB +35,100W +10,093.6W = 0 
 
MB = −45,194W ft −lbf  per unit width  
 
Why is the answer negative?  (What did we assume for an initial direction of 
MB?) 
 
 
The hydrostatic forces will tend to roll the surface clockwise relative to  B, 
thus a resisting moment that is counterclockwise is needed for static 
equilibrium. 
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Always review your answer (all aspects: magnitude, direction, units, etc.) to 
determine if it makes sense relative to physically what you understand 
about the problem.  Begin to think like an engineer. 
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Buoyancy 

 
 
An important extension of the procedure for vertical forces on curved surfaces is 
that of the concept of buoyancy. 
 
The basic principle was discovered by Archimedes. 
 
 

 
It can be easily shown that 
  (see text for detailed 
development) the buoyant force Fb  
is given by: 

 
Fb  =  ρ g Vb 
 

where Vb is the volume of the 
fluid displaced by the submerged 
body and ρ g is the specific 
weight of the fluid displaced. 

 

Patm

Vb
Fb

• c.g.

 

 
 

Thus, the buoyant force equals the weight of the fluid displaced, which is 
equal to the product of the specific weight times the volume of fluid 
displaced. 
 
 

The location of the buoyant force is through a vertical line of action, directed 
upward, which acts through the centroid of the volume of fluid displaced. 
 
Review all text examples and material on buoyancy. 
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Pressure Distribution in Rigid Body Motion 
 
 
All of the problems considered to this point were for static fluids.  We will now 
consider an extension of our static fluid analysis to the case of rigid body motion, 
where the entire fluid mass moves and accelerates uniformly (as a rigid body). 
 
The container of fluid shown below is accelerated uniformly up and to the right as 
shown. 
 

 
 
 
From a previous analysis, the general equation governing fluid motion is 
 

   ∇ P = ρ( g − a ) + µ ∇ 2 V  
 
For rigid body motion, there is no velocity gradient in the fluid, therefore 
 
 µ∇ 2 V = 0  
 
The simplified equation can now be written as 
 
   ∇ P = ρ( g − a ) = ρG  
 

where   G = g − a ≡  the net acceleration vector acting on the fluid. 
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This result is similar to the equation for the variation of pressure in a hydrostatic 
fluid. 
 

However, in the case of rigid body motion: 
 

 *   ∇ P  = f {fluid density & the net acceleration vector-  G = g − a  } 
 
 * ∇ P  acts in the vector direction of  G = g − a . 
 

* Lines of constant pressure are perpendicular to     G  .  The new 
orientation of the free surface will also be perpendicular to    G . 

 
 
The equations governing the analysis for this class of problems are most easily 
developed from an acceleration diagram. 
 
 

 Acceleration diagram: 
 
For the indicated geometry: 
 

θ = tan −1 ax
g + az

 
 
 

 
 
 

 

 

  

dP
ds

= ρG where G = a x
2 + (g + a z ) 2{ } 1

2

 

and        P2 − P1 = ρG(s 2 − s1 )  
 
Note:  P2 − P1 ≠ ρ g z2 − z1( ) 

and 

s2 – s1  is not a vertical dimension 
 

a

-a

g

G

θ

θ

Freesurface

P2

P1
s

ax

az

 

 
Note:  s  is the depth to a 
given point perpendicular 
to the free surface or its 
extension.  s is aligned 
with    G . 
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In analyzing typical problems with rigid body motion: 
 

1. Draw the acceleration diagram taking care to correctly indicate –a, g, 
and θ, the inclination angle of the free surface. 

2. Using the previously developed equations, solve for G and θ. 

3. If required, use geometry to determine s2 – s1  (the perpendicular 
distance from the free surface to a given point)  and then the pressure 
at that point relative to the surface  using  P2 – P1 = ρ G (s2 – s1) . 

 

Key Point:  Do not use  ρg  to calculate  P2 – P1, use  ρ G. 
 
Example 2.12 
Given:  A coffee mug, 6 cm x 6 cm 
square, 10 cm deep, contains 7 cm of 
coffee.  The mug is accelerated to the 
right with  ax = 7 m/s2 .  Assuming rigid 
body motion and  ρc = 1010 kg/m3, 
Determine:  a.  Will the coffee spill? 
b.  Pg at  “a & b”. 

c.  Fnet on left wall. 
a.  First draw schematic showing the 

original orientation and final 
orientation of the free surface. 

a b

7 cm

10 cm

∆ z

a
x

θ
6 cm

 

ρc = 1010 kg/m3 ax = 7m/s2 az = 0 g = 9.8907 m/s2 
 

We now have a new free surface at an angle  θ  where 

θ = tan −1 ax

g + az

 
 
 

 
 
 

 

θ = tan−1 7
9.807 =35.5°  

∆z = 3 tan 35.5  = 2.14 cm 

a-a

gG

θ
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 hmax =  7 + 2.14 = 9.14 cm < 10 cm  ∴   Coffee will not spill. 
 
b.  Pressure at “ a & b.” 

Pa = ρ G ∆ sa 

G = {a2
x + g2}1/2 = { 72 + 9.8072}1/2 

G = 12.05 m/s2 

∆ sa = {7 + z} cos θ  

∆ sa = 9.14 cm cos 35.5 = 7.44 cm 

Pa = 1010 kg/m3*12.05m/s2*0.0744 m 

Pa = 906 (kg m/s2)/m2 = 906 Pa 
Note:   aP g y G gρρρρ≠ ≠≠ ≠≠ ≠≠ ≠   

a b

7 cm

10 cm

∆ z

ax

θ
6 cm

θ
∆ sa

 

 
Q:  How would you find the pressure at b,  Pb? 
 
c.  What is the force on the left wall? 
We have a plane surface, what is the rule? 

Find  cg, Pcg, F = Pcg. A 
Vertical depth to cg is: 

zcg = 9.14/2 = 4.57 cm 

∆scg = 4.57 cos 35.5 = 3.72 cm 

Pcg = ρ G ∆scg  

Pcg = 1010 kg/m3*12.05 m/s2* 0.0372 m 

Pcg = 452.7 N/m2 

F = Pcg A = 452.7 N/m2*0.0914*0.06m2 

F = 2.48 N  ← 

a b

7 cm

10 cm

∆ z

a
x

θ

6 cm

θ

•cg

∆ scg
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What is the direction? 
 
Horizontal, perpendicular to the wall;  
 
i.e. Pressure always acts normal to a surface. 
 
Q:  How would you find the force on the right wall? 
 


	These concepts are key to the solution of problems in fluid statics and lead to the following:
	
	
	Example 2.5


	Forces on Curved Surfaces

	Finding the Location of the Centroid
	
	Vol = Vol A - B - C


	We have a plane surface, what is the rule?

