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ABSTRACT: Thermal runaway of chemical reactors remains a central challenge in chemical
process safety because small imbalances between heat generation and removal can trigger
rapid temperature escalation. In this contribution, we combine mechanistic modeling, :
targeted experiments, and data-driven tools to predict both the onset and intensity of s 2 e
chemical reactor runaway, demonstrated here for batch and fixed-bed systems and formulated )
to be extensible to other reactor types and reaction networks. Experimentally, we investigate
selective methanol oxidation over Pt—Bi/activated carbon in a fixed-bed reactor and measure
axial temperature profiles under varied feed temperature and oxygen concentration. A five-
reaction pseudohomogeneous plug-flow model, coupled with sensitivity analysis of T,,,, identifies critical operating thresholds and
clarifies how Bi promotion suppresses highly exothermic CO, pathways, widening the safe operating window. To generalize
prediction beyond single-reaction systems, we formulate data sets of dimensionless groups (¥, B, Da, St, w) for batch and flow
reactors and introduce a kinetic weighting factor ¢, to map multireaction mechanisms onto an effective parameter space. Logistic
Regression, Random Forest, and Support Vector models are trained and validated on literature data (acetic anhydride hydrolysis,
batch) and our fixed-bed experiments (methanol oxidation), with Random Forest providing the highest accuracy and the lowest miss
rate (false negatives) for classifying runaway onset. We propose a continuous, ML-informed criticality metric, #, which aggregates
feature importance with proximity to classical critical values to quantify “how close” a system is to runaway. This unified framework
links mechanistic insight with fast, reliable prediction, enabling safer operating envelopes, catalyst-informed mitigation strategies, and
practical early warning diagnostics for industrial reactors.

# e

1. INTRODUCTION The ability to accurately model and predict the onset of
thermal reactor runaway is paramount for ensuring safe
operation, and numerous approaches have been proposed
over the past century. Following Semenov’s foundational
theory,” several thermal runaway criteria were developed to
capture instability boundaries. The Thomas—Bowes (TB)* and
Adler—Enig (AE)® criteria identify runaway through the
occurrence of a positive second-order derivative prior to the
maximum temperature in either the temperature—time or
temperature—conversion domains. The Morbidelli—Varma
(MV) criterion®™"" and the Henning—Perez (HP) criterion'”
instead locate the runaway boundary within regions highly
sensitive to small parameter variations. Strozzi and Zaldivar
introduced the divergence (SZ) criterion, > "7
terizes runaway by analyzing chaotic attractors and the

Thermal runaway of chemical reactors is characterized by a
repeated cycle where there is a progressive increase in
temperature caused by an accumulation of heat due to
insufficient cooling. This temperature increase accelerates the
reaction rate of a strongly exothermic reaction, leading to
further heat release and eventually a destructive outcome such
as a thermal explosion. In industrial practice, such accidents
have been reported in polymerization, nitration, and hydro-
genation systems, often resulting in severe casualties, large-
scale equipment damage, and significant financial losses."”” The
underlying hazard originates from the nonlinear coupling
between chemical kinetics and reactor heat transfer, where
even a minor imbalance between heat generation and removal
can destabilize reactor operation. Factors such as high reactant
loading, poor mixing, or cooling failure can accelerate this

which charac-

progression, highlighting the narrow margin between stable Received: ~ September 29, 2025
operation and runaway. Because of these risks, understanding Revised:  December 26, 2025
and preventing thermal runaway has long been a central issue Accepted:  January 8, 2026

in chemical reaction engineering, driving research into
detection, modeling, and control strategies for safe operation
and loss prevention across the chemical and related industries.
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Figure 1. Kinetics investigation: (a) Schematic of the fixed-bed reactor apparatus fabricated from 316 L stainless steel tubing with outer and inner
diameters of 12.7 mm and 11.7 mm, respectively, and an overall length of 400 mm. Thermocouples in the catalyst bed section were positioned at 10
mm intervals along the axial direction. (b) Reaction rate fit for step R, at T, = 343 K using 0.02 g of packed catalyst and a methanol feed rate of 0.6
mL/h, showing conversion of methanol to formaldehyde at varying CH;OH partial pressures. (c) Arrhenius plots for reaction steps R,—R under
standard operating conditions, with temperatures varied between 343—393 K using 0.02 g of packed catalyst, an O, feed at 50% of the

stoichiometric value, and a CH;OH:O, molar ratio of 4:1.

expansion or contraction of phase-space volume elements.
Although these classical criteria differ in formulation, they
generally converge on similar predictions of the runaway
limit.'® More recent developments have refined these
approaches. Adrover et al. proposed a method based on
tangential stretching rates along system trajectories, where
instabilities indicate runaway; this method successfully
estimated explosion limits in the H,—O, system.'” Jiang et
al. later introduced a modified divergence criterion based on
the Jacobian matrix, where critical conditions are identified
when the Jacobian trace reaches a maximum; the predictions
showed good agreement with the MV criterion in assessing
methyl nitrate decomposition.”” Building on existing frame-
works, Kummer and Varga developed two hybrid criteria by
combining critical equation terms, which proved effective in
optimizing feed trajectories for fed-batch 2-octanone oxidation
reactors.” ">

In fact, whatever criteria are applied to estimate the thermal
runaway boundary, all require time-consuming computations
and sophisticated mathematical thresholds, where numerous
parameters such as the properties of reactants, the dimensions
of the reactor, the temperature, and the flow rate of coolant are
required for the full description of a reactor. In addition,
multiple ordinary differential equations (ODEs) must be
solved to obtain the runaway boundary. Although these
methods are feasible for a limited number of cases, the
estimation of thermal runaway for a great number of reactors
becomes mathematically demanding, a situation that is
increasingly common in today’s large chemical plants.
Therefore, beyond relying solely on classical models, there is
a pressing need for pragmatic alternatives that can rapidly and

precisely evaluate thermal runaway. Machine learning (ML)
represents an ideal candidate due to the inherent complexity of
the mathematical modeling of chemical reactor runaway. ML
has transformed engineering by converting millions of data
points into actionable information, and it has emerged as a
robust tool to address multidimensional problems in chemical
engineering, including catalyst design,23 crystal identification,”*
activity coefficient prediction,” and fault diagnosis of chemical
processes.”® However, the application of ML to classify thermal
reactor runaway remains limited. In one example, Varga et al.
utilized a Decision Tree (DT) algorithm to distinguish
between runaway and nonrunaway scenarios in a fixed-bed
reactor, developing a tool capable of forecasting runaway
events.”” Similarly, Kummer et al. employed genetic program-
ming to generate equations that could accurately indicate
runaway in both continuously stirred tank reactors (CSTRs)
and batch reactors.”’ Despite these important advances, there
is still no generalized framework capable of identifying thermal
reactor runaway across diverse reactor configurations and
multiple-reaction mechanisms.

In our prior research, Pt—Bi bimetallic catalysts were
investigated for the catalytic conversion of glycerol to 1,3-
dihydroxyacetone,”*’ the deoxygenation of guaiacol usin§
methane,””*! and the nonoxidative coupling of methane,’
with emphasis on parametric sensitivity, catalyst design, and
reactor safety. Building on this foundation, the present work
develops a transferable machine-learning (ML) framework to
evaluate reactor thermal behavior, demonstrated on batch and
fixed-bed configurations. Several algorithms, including Logistic
Regression (LR), Ridge Regression (RR), Random Forest
(RF), and Support Vector Machine (SVM), were trained and
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validated, beginning with literature data on acetic anhydride
hydrolysis reported by Haldar and Rao.”> To further
demonstrate applicability, the selective oxidation of methanol
to formaldehyde was studied experimentally, and the resulting
data were used to establish a kinetic model. This model
enabled the generation of a data set of runaway instances in a
packed-bed reactor, which was then analyzed using ML. From
the feature importance analysis of the RF algorithm, a new
ML-based criterion (7) is proposed to predict the extent of
reactor criticality, and its potential applications for practical
reactor safety evaluation are discussed. To the best of our
knowledge, this study is the first to integrate reported literature
data, new fixed-bed experimental measurements, and classical
mechanistic modeling within a unified machine-learning
framework to predict both the onset and the extent of thermal
runaway in reacting-flow systems. Prior machine-learning
efforts related to thermal runaway have focused primarily on
battery cells and energy-storage materials rather than catalytic
reactors, and no previous work has combined mechanistic
criteria, experimental validation, and ML-based criticality
metrics as demonstrated here. This integrated approach
therefore represents a distinct and innovative contribution.

2. METHODS

2.1. Catalyst Synthesis and Materials

Hexachloroplatinic acid and bismuth(IIT) chloride (both
>99.9% metals basis, Sigma-Aldrich) were used as Pt and Bi
precursors, respectively. Activated carbon (AC, 80—120 mesh,
Norit Americas, Inc.) served as the catalyst support.
Calibration compounds—including methanol (99%), form-
aldehyde (37 wt % solution with 7—8% methanol as stabilizer
in water), methyl formate (97%), dimethoxymethane (98%),
and formic acid (97%)—were purchased from Alfa Aesar. The
following gas purities were used in this study: Ar (99.999%),
CO, (99.99%), H, (99.999%), He (99.98%), N, (99.999%),
and O, (99.98%). Following our previous procedure,””** Pt—
Bi catalysts were synthesized by the wet impregnation method,
with Pt loaded first followed by Bi. For simplicity, the catalyst
descriptions in subsequent sections omit explicit reference to
the AC support, since it was the only support material used,
and all Pt and Bi loadings are reported on a weight (wt) basis.
2.2. Catalyst Tests and Measurements of Kinetics and
Reactor Temperatures

Catalytic performance tests were conducted in a fixed-bed
reactor, as shown in Figure 1 (a). Prior to tests, the packed
catalysts were reduced at 723 K for 4 h under a H,—N, gas
mixture (H,:N, = 1:2). The reactor was then purged with
nitrogen for 15 min. The standard operating conditions were:
343 K, 1 atm, 0.02 g catalyst, methanol feed rate of 0.6 mL/h
(liquid, at room temperature), preheated to 343 K before
entering the reactor, and a total gas flow rate of 100 mL/min
(corresponding to 6% CH;0H, 1.5% O,, and 92.5% N,).
These feed rates corresponded to a molar ratio of 4:1 between
CH;0H and O,, i.e, using 50% of the stoichiometric O, as
described later in eq 4. As noted in our prior work,”* a
substoichiometric O, feed was used to suppress overoxidation
of products (e.g, formic acid, CO,). An Agilent 6890 gas
chromatography (GC) system equipped with a DB-1701
column (30 m X 0.25 mm) and a flame ionization detector
(FID) was used for quantitative analysis of liquid products.
The gaseous reactor effluent was analyzed using an Agilent
3000A micro-GC equipped with two columns (Column A:

Molsieve SA, 10 m X 0.32 mm; Column B: Plot U, 8 m X 0.32
mm) and two thermal conductivity detectors (TCDs). All
catalytic performance data were collected at 0.5 h time-on-
stream (TOS). Blank tests using the AC support were carried
out under identical operating conditions, with methanol
conversion always less than 0.3%. Carbon mass balances
were consistently within 94 + 2%.

For axial temperature profile measurements, two K-type
thermocouples were inserted from both ends of the reactor.
Temperatures at four axial positions (L = 10, 20, 30, and 40
cm) were measured in duplicate experiments, with L = 0 cm
considered as the feed temperature. The reactor bed length
was maintained at 40 cm by mixing the active catalyst with ~
0.50 g of inert AC to ensure uniform packing. The reactor tube
was immersed in a constant-temperature water bath (T, = 343
K). All experiments were repeated at least twice, with
repeatability confirmed and deviations within 2% for all
quantitative analyses.

2.3. Model Development of Reaction Kinetics and
Fixed-Bed Reactor

Several key performance metrics, including methanol con-
version, product selectivity, and yield, are defined as follows:
mol of reacted methanol

Methanol conversion =
mol of methanol feed (1)

mol of formed product

Product selectivity =
mol of reacted methanol ()

mol of formed product
mol of methanol feed 3)

Product yield =

Consistent with our prior study,” the target product was
formaldehyde (CH,0), and four byproducts were typically
observed: methyl formate (C,H,0,), formic acid (CH,0,),
dimethoxymethane (C;HgO,), and carbon dioxide (CO,).
Because methanol conversion remained low (<10%) under
thermally stable conditions, only five parallel reactions—each
initiated from methanol and oxygen—were considered in the
kinetic model, as shown in eqs 4—(8). Further reactions of
products (e.g., oxidation of CH,O to CO,) were not included
for simplification of the reaction network. Because all kinetic
parameters were measured under low-conversion, nonthermal
conditions where methanol conversion remained below 10%,
the simplified five-reaction mechanism is an appropriate and
deliberate choice for thermal-safety analysis in this regime;
deeper secondary oxidation pathways ultimately converge to
the highly exothermic CO,-forming reaction already repre-
sented in R;, and extending the mechanism to include detailed
higher-order oxidation sequences is a valuable direction for
future work.

1
R;: CH,OH + —0, — CH,0 + H,0

(4)
R-CHOH+£O —>1CHO + H,0
2° 3 2 2 ) 2542 2 (5)
R, CH,OH + O, - CH,0, + H,0 )
R-CHOH+£O —>1CHO +%HO
4+ 3 6 2 3 382 3 2 (7)
R: CH,OH + %oz - CO, + 2H,0 ®)
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The kinetics of these reactions follow a power-law rate form,
as expressed in eqs 9—(10):

= kPcijonPo)”; i=1-5 )
Ry .

h=2Fh =19
E, (10)

For the reactor model, a one-dimensional pseudohomoge-
neous plug-flow formulation was employed, as described by
egs 11—(15):

dF. S
] .
—_ = g ; =1-9
aw § Gifii J ()

w3 dfy (12)
9
_ ]
&= Z D P
j=1 “total (13)
2 2
G, G,
¢,; = Cy+ Cy + Gy forCg < T < Cy

(14)

U o 14, oA, (15)

The bed-side heat-transfer coefficient @; was obtained from
the Wakao—Funazkri packed-bed correlation, using the reactor
inner diameter D; as the characteristic length and the thermal
conductivity of the N, -rich reactant mixture (4, & 0.030 W
m™ K7! at 400 K), whereas the wall-side coefficient a, was
computed from an external forced-convection correlation for
air flowing over a cylinder, with the outer diameter D, as the
characteristic length and 4, ~ 0.031 W m™ K/; in eq 15, the
wall term uses the stainless-steel conductivity 4, &% 16 W m™!
K. In eqs 9—15, i = 1 — 5 corresponds to the five reaction
steps (R;-Rs), and j = 1 — 9 corresponds to the species
CH;0H, O,, CH,0, C,H,0,, CH,0,, C;H;0,, CO,, H,0,
and N, (inert carrier gas).

Following eq 14, the heat capacity of each pure component
was obtained using DIPPR eq 107,”> with parameter values
listed in Table S1. The mixture heat capacity was calculated
using the mixing rule in eq 13. The overall wall heat transfer
coefficient (U) was estimated using eq 15.%° The overall heat-
transfer coefficient U is treated in this work as an effective,
approximate parameter that represents the overall heat-
removal capability of the experimental setup. Because detailed
heat-transfer coeflicients and temperature-dependent transport
properties were not independently measured, the model is
intended to capture trends in axial temperature evolution and
to identify the onset and proximity of thermal runaway, rather

than to provide high-fidelity prediction of absolute hotspot

magnitudes.
The initial conditions were
E=E, T=TywhenW=0 (16)

The above ODE system was solved numerically using the
zvode solver from scipy.integrate (the SciPy
package, www.scipy.org, employing the BDF (backward

differentiation formula) method. Step sizes of 100, 200, and
500 were tested along the reactor length. The step-size
sensitivity was evaluated using the steep near-critical temper-
ature profile at an inlet temperature of T, = 403 K, which
provides the largest axial temperature gradients and therefore
the most stringent test of numerical resolution. It was found
that 200 and 500 steps gave essentially identical results (e.g.,
reactor temperature up to five significant figures), and
therefore a 200-step size was employed in all calculations.

To quantify the sensitivity of the maximum reactor
temperature (T,) to changes in operating conditions,
sensitivity coefficients were defined with respect to the inlet
temperature (1) and oxygen partial pressure (P,), as shown

in eqs 17—(18). These dimensionless coefficients normalize
the rate of change of T,,, with respect to each parameter,
thereby allowing a direct comparison of their relative influence
on runaway behavior. Specifically, eq 17 evaluates the effect of
perturbations in T on T,,,,, while eq 18 captures the impact of
changes in P,. Larger values of the sensitivity coefficients
indicate that small deviations in the corresponding parameter
strongly amplify the maximum temperature, highlighting
critical conditions for thermal runaway.

T T, 0T
(T Tp) = ———5(Tpps Tp) = ———2
Thax T 9T, (17)
P, P, oT
S(T_..; Py) = (T ;P)) = 2. S
( max/ Oz) Tmax ( max/ Oz) Tmax OPOZ (18)

2.4. Model Development of Machine-Learning Criterion
for Thermal Runaway Prediction

Thermal runaway data from industry is scarce and usually
limited to specific reactions or reactor types, as operating close
to the runaway boundary poses significant risks. To address
this limitation, we combined two sources of data: 200
experimental cases of catalytic acetic anhydride hydrolysis
reported in the literature,”” and 200 cases from our own
methanol oxidation experiments. The combined data set is
expressed as

Dataset = [y, y, B, Da, St, R, 7]

Here, [y, y, B, Da, St] represent the matrix of dimensionless
parameters— dimensionless activation energy (y), Semenov
number (), dimensionless heat of reaction (B), Damkohler
number (Da), and Stanton number (St)- which describe the
intrinsic properties of the reaction and reactor systems
(detailed in the Supporting Information). These quantities
serve as the features for the ML models. The variable R
denotes the onset of thermal runaway (R = 0 for nonrunaway,
R = 1 for runaway), and # denotes the extent of criticality,
discussed further in the following sections.

According to Varma et al,'® batch reactors can be fully
characterized by [y, y, B], while plug-flow reactors (PFRs) are
characterized by [y, B, Da, St]. Dimensionless parameters not
applicable to a given reactor type are set to zero (e.g,, Da and
St for batch reactors, y for PFRs). Thus, the feature space is [7,
w, B, 0, 0] for batch reactors and [y, 0, B, Da, St] for PFRs. To
reduce model complexity, ambient temperature (6, for batch
reactors) and coolant temperature (6,, for PFRs) were set to
zero. For each reactor type, 5,000 synthetic data sets were
generated using the Adler—Enig (AE) and Henning—Perez
(HP) criteria. The AE criterion was used for acetic anhydride

https://doi.org/10.1021/acs.iecr.5c04085
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hydrolysis (batch reactor), and the HP criterion was applied to
methanol oxidation (packed-bed reactor). The AE and HP
criteria were chosen for the batch and fixed-bed reactors,
respectively, because they are the standard onset definitions for
lumped, spatially uniform systems and for spatially distributed
packed-bed systems, and therefore reflect the appropriate
instability physics for each reactor type. A detailed description
of the synthetic data—generation workflow, including sampling
of operating parameters, numerical solution of the governing
equations, application of AE and HP criteria to assign stability
labels, and assembly of the dimensionless input matrix, is
provided in the Supporting Information to ensure full
transparency and reproducibility.

The data sets were partitioned into training, validation, and
testing subsets. Experimental data were reserved exclusively for
testing, while generated data sets were split into two-thirds
training and one-third validation. The final split is summarized
as

(5,000 Generated + 200 Experimental)
Training: Validation: Testing = 3,333: 1,667: 200

Machine-learning modeling and evaluation were carried out
in Python, using scikit-learn for algorithm develop-
ment, pandas for data handling, and scipy for numerical
operations. ML models were validated against literature data
for batch acetic anhydride hydrolysis®® and then applied to our
packed-bed reactor methanol oxidation experiments. The
batch reactor ML model was trained and validated using the
AE-labeled batch data set, and the packed-bed reactor ML
model was trained and validated using the HP-labeled packed-
bed data set; the two reactors were analyzed independently,
and no ML model was ever applied across reactor types.
Predicting the onset of thermal runaway was formulated as a
classification problem. Three algorithms were evaluated:
Logistic Regression (LR), Random Forest (RF, with 150
trees), and Support Vector Machine (SVM). The model
features were [y, y, B, Da, St], with output R. Hyperparameters
were optimized by random search (Tables S5—S8). Perform-
ance was assessed using accuracy and miss rate (false negative
rate). Each model was executed 50 times, and mean values
were reported. Accuracy and miss rate are defined as

TP + TN

Accuracy =
TP + TN + FP + FN
FN
Miss Rate = ———
FN + TP

where TP, TN, FP, and FN denote true positives, true
negatives, false positives, and false negatives, respectively. The
goal is to maximize accuracy while minimizing miss rate, with
particular emphasis on avoiding false negatives (misclassifying
runaway as nonrunaway). To construct the test data sets,
dimensionless parameters [y, w, B, Da, St] were calculated
from experimental conditions (initial temperature and other
physicochemical properties, see SI). Although runaway onset
values were available from the literature™ and our own
experiments, they were revalidated using classical runaway
criteria to ensure consistency. A key limitation of classical
runaway criteria is that they were originally formulated for
single reactions, whereas our methanol oxidation system
involves five parallel reactions. To account for this, we
introduced a normalization parameter o, that weighs the

kinetic contribution of each reaction step, as defined in Egs.
19-24.

. k(D)
" ky(T) + ky(T) + ky(T) + ky(T) + ky(T)) (19)

n=1 (20)
5
B= ) B,o,
n=1 (21)
5
Da = Z Da,-c,
n=1 (22)
5
St= ) Sto,
n=1 (23)
5
v= 2 v,
v (24)

All these dimensionless groups are defined in Supporting
Information. Once the normalized experimental data sets were
established, generated data sets were calculated in the same
way, covering the parameter ranges summarized in Table 1.

Table 1. Parameter Ranges Used for Generating Synthetic
Datasets for Batch and Packed-Bed Reactors (PBR)

Parameter Batch PBR
v 5-40 1-30
B 5-20 0.25-2
Da 0 0.5—4
St 0 0.4—1
v 02-2.1 0

Both experimental and generated data sets were used to train
and test the ML classification models (LR, RF, and SVM). To
quantify the extent of criticality as a measure of practical
runaway risk, we propose a new ML-based criterion #, defined
as

J

ST
Batch Reactor: 7 = z @p—, P =1y, v, B]
pari ] (25)

St < ~
PBR: 7 = wStS—t‘ +) ij, P = [y, B, Da]

j=1 ) (26)

For the batch reactor, the critical values P,  are determined
using the Adler—Enig (AE) criterion, whereas for the packed-
bed reactor they are determined using the Henning—Perez
(HP) criterion, consistent with the mechanistic formulations

applied to each system. The w) is the feature importance of P,
determined by the RF algorithm. By definition, Zle wp, =1,
reflecting the relative contribution of each parameter to
runaway onset. Predicting the extent of criticality is formulated
as a regression task. Three algorithms were employed: Ridge
Regression (RR), Random Forest (RF, 150 trees), and Support
Vector Machine (SVM). The features were [y, w, B, Da, St]
and the output was 7. Hyperparameters were tuned via random
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Figure 2. Comparison of experiments and model predictions with sensitivity analysis under differential fixed-bed operating conditions. All
measurements were conducted at 343 K, 1 atm, using 0.02 g catalyst, a methanol feed rate of 0.6 mL/h (liquid, preheated to 343 K), and a total gas
flow of 100 mL/min (6% CH;OH, 1.5% O,, 92.5% N,). Under these conditions, stable and near-critical cases exhibited <10% methanol conversion
with ~ 95% selectivity to formaldehyde, whereas conditions close to thermal runaway exceeded 10% conversion and produced CO, as the
dominant product. (a) Experimentally measured axial temperature profiles (points) compared with model predictions (curves) at varied feed
temperatures, illustrating hotspot development. (b) Experimentally measured and model-predicted axial temperature profiles at varied oxygen
concentrations. (c) Normalized sensitivity of maximum reactor temperature with respect to inlet temperature (T,), comparing model predictions
and experiments. (d) Normalized sensitivity of maximum reactor temperature with respect to feed oxygen concentration, again comparing model
and experiment.These operating conditions and measured conversion—selectivity trends provide the context for interpreting the hotspot behavior
and the transition from selective oxidation to deep oxidation near the thermal runaway boundary.

search, consistent with the classification models (Tables S5—
S8). Model performance was evaluated using the root-mean-
square error (RMSE)

RMSE =

(27)

where y; are the observed values, f; are the predicted values,
and 7 is the number of observations.

3. RESULTS AND DISCUSSION

In our prior work,>* extensive catalyst characterization was
performed to elucidate the structure of Pt—Bi catalysts and to
establish correlations between structure and catalytic activity.
Characterization techniques included BET surface area
analysis, H,-TPR (temperature-programmed reduction), ICP-
AES (inductively coupled plasma—atomic emission spectros-
copy), TEM (transmission electron microscopy), TEM-EDX

(energy-dispersive X-ray spectroscopy), TPO (temperature-
programmed oxidation), XPS (X-ray photoelectron spectros-
copy), and powder XRD (X-ray diffraction). From these
measurements, we found that all Pt—Bi catalysts supported on
activated carbon exhibited high surface areas (500—600 m*/g),
pore sizes of 2.6—3.8 nm, and pore volumes of 0.7—1.5 cm®/g.
Elemental analysis showed that the compositions of Pt and Bi
in fresh catalysts were close to their designed loading values,
whereas used catalysts exhibited 2—4 wt % losses of both
metals, consistent with the unavoidable leaching reported
previously.>”*®* XRD patterns of the bimetallic catalysts
revealed no significant peaks between 5—90°, likely due to
the small particle size (<3 nm), low metal loading (<5 wt %),
and the strong background from the amorphous support.””*’
TEM and H,—O, titration®’ gave consistent particle size
estimates, while XPS and TEM-EDX confirmed strong
electronic interactions between Pt and Bi species. Furthermore,
H,-TPR analysis indicated a linear relationship between
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catalyst reducibility and selectivity toward formaldehyde, and
TPO demonstrated that the addition of Bi suppressed coke
formation compared to the pure Pt catalyst.

3.1. Experimental Measurements and Mechanistic Model
Validation
e . 42 dpz’r/{m .

The criterion of Weisz and Prater, (P,fo < 1), was satisfied
for all measurements, confirming the absence of mass transfer
limitations in the kinetic data. External mass-transfer effects
were also evaluated by performing flow-rate screening
experiments at constant contact time (W/F); the observed
reaction rate remained unchanged for feed flow rates above 0.4
mLh™!, demonstrating that gas—film resistance does not
influence the measured kinetics. Sherwood numbers estimated
from the Wakao—Funazkri correlation further confirmed that
the external mass-transfer coefficient is large relative to the
intrinsic reaction rate under all kinetic conditions, indicating
that external diffusion limitations are negligible. A simple radial
heat balance using Biot and Fourier numbers suggests that
radial temperature differences in the packed bed are expected
to be smaller than 2—4 K under stable conditions, but may
grow to ca. 6 K near critical feed temperatures, consistent with
the deviations observed. Because the fixed-bed reactor is a thin,
elongated tube with L/D > 30, heat transfer is dominated by
the axial direction and radial temperature gradients can be
neglected under the operating conditions of this study.
Together with the Weisz—Prater analysis confirming the
absence of internal diffusion limitations, this indicates that
the 1-D pseudohomogeneous model is reliable up to the onset
of runaway, while deviations beyond that point arise from
expected multidimensional heat and mass transfer effects.
Because the one-dimensional pseudohomogeneous formula-
tion is intended only to capture the low-conversion, prerun-
away regime where intrinsic kinetics and minimal radial
gradients remain valid, its role in this study is to identify the
onset of instability rather than to reproduce multidimensional
temperature fields during fully developed runaway. Because a
one-dimensional pseudohomogeneous model cannot capture
wrong-way behavior in packed-bed reactors, this is a
fundamental limitation of the present mechanistic framework
and future extensions incorporating heterogeneous two-
energy-equation models, axial dispersion, and multidimen-
sional heat-transfer descriptions will be required to resolve
wrong-way dynamics and generate synthetic data sets that
more fully represent such behavior for ML training. To gain
mechanistic insight into the parametric sensitivity of Pt—Bi
catalyst design and reactor operation for selective methanol
oxidation, we first focus on the optimal 1%Pt—0.5%Bi catalyst,
which achieved 8.1% methanol conversion, 98% selectivity, and
7.9% yield to formaldehyde under optimized conditions.”* As
established in our previous study on methanol oxidation, the
experiments in Figure 2 were conducted under the same
optimized differential-regime conditions; under these con-
ditions, nonrunaway cases exhibit methanol conversion below
10%, whereas runaway cases exceed 10% conversion and CO,
becomes the dominant product. Figure 1b shows the measured
rate of the first reaction step as a function of methanol partial
pressure. The rate displays a nearly linear dependence on
Pcy,om and the slope provides the fitted value of the rate
constant k; under the specified operating conditions. Figure lc

presents Arrhenius plots for all five elementary reaction steps.
The logarithm of each rate constant decreases linearly with 1/

T, allowing extraction of apparent activation energies and
illustrating the relative temperature sensitivities of the
individual reaction pathways. Because methanol conversion
values were consistently below ~ 10%, differential kinetics
applied, as described by Eq. 28. Although strongly exothermic
reactions may give rise to radial temperature gradients in
cooled packed-bed reactors, a quantitative assessment based on
dimensionless analysis and a simplified two-dimensional energy
balance indicates that such gradients remain secondary under
the operating conditions considered. Accordingly, a one-
dimensional axial model is retained to capture hotspot
development and proximity to thermal runaway, while details
of the radial-gradient assessment are provided in the
Supporting Information.

Fiva)
A )W (28)

rl.=

Using this framework, reaction orders of CH;OH (n(,,))
and O, (”(1,2)) in step R, were determined. Figure 1b shows

1(1,2)

that assuming n(; 1y = n¢,) = 1 yields linear fits of r,/Pg
versus Pcy oy and rl/P’S;;;OH versus Pg, providing consistent

values of k,. Alternative assumptions with higher orders (e.g,
nay = 1 onapy =25 napy = nap) = 2) resulted in poorer fits,
supporting the validity of first-order kinetics for both CH;OH
and O, in R,. Similar analyses for steps R,—Rg showed that
first-order dependencies consistently provided the best fits,
likely owing to the low conversion and partial pressures (<0.1
atm) of both CH;OH and O,. The Arrhenius plots for all five
steps (Figure 1c) showed excellent linearity, from which
activation energies (E,;) and pre-exponential factors (A;) were
extracted (Table S2). Because the Pt—Bi/activated-carbon
catalyst studied here is a novel low-temperature selective-
oxidation system, the activation energies and rate constants
extracted in this work represent, to the best of our knowledge,
the first experimentally determined kinetic parameters reported
for this catalyst, thereby providing a necessary basis for the
mechanistic modeling framework developed in this study.
Additional supporting results, including dew point temperature
calculations (Table S3) and kinetic parameters for the 1%Pt
and 1%Pt—0.2%Bi catalysts (Table S4), are also provided. A
95% confidence intervals for the activation energies and pre-
exponential factors is obtained in Table S2. Among the five
steps, R, (formaldehyde formation) and R (CO, formation)
dominated, with R displaying the strongest temperature
dependence due to its higher activation energy (76.9 kJ/mol vs
15.6 kJ/mol for R,). At the reactor scale, the kinetic model was
validated against experimental axial temperature profiles.
Figure 2a compares experimental and model-predicted results
at different feed temperatures (T, = 343—403 K). Good
agreement was obtained at moderate feed temperatures (343—
393 K), where both experiment and model showed relatively
steady profiles. At higher T, values, however, hot spots
appeared: at 398 K a minor local maximum emerged, while at
403 K both experiment and model captured a sharp runaway,
with peak reactor temperatures near 500 K. Under nonrunaway
conditions the mechanistic model reproduces the measured
axial temperature profiles, while under runaway-prone
conditions the model correctly identifies the onset of thermal
runaway even though the full runaway trajectory cannot be
experimentally accessed. Figure 2b shows similar trends for
varied feed oxygen concentrations (1.5—6% O, at constant 6%
CH;0H). Stable operation was observed at 1.5—4% O,,
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Figure 3. Sensitivity of Pt—Bi bimetallic catalyst design on reactor thermal performance: (a) Axial temperature profiles at Ty = 343 K for 1%Pt, 1%
Pt—0.2%Bi, and 1%Pt—0.5%Bi catalysts. (b) Axial temperature profiles at T, = 373 K for the same catalysts, showing more pronounced hot-spot
formation for 1%Pt and 1%Pt—0.2%Bi. (c) Axial temperature profiles at 1.5% O, feed, where all three catalysts remain thermally stable. (d) Axial
temperature profiles at 3% O, feed, where both 1%Pt and 1%Pt—0.2%Bi exhibit runaway behavior while 1%Pt—0.5%Bi maintains relatively stable

performance.

whereas hot spots developed at 5—6% O,, marking the onset of
runaway. In these extreme cases, model predictions deviated
somewhat from experiments, likely due to effects not captured
by the one-dimensional pseudohomogeneous model, such as
external mass transfer resistance, radial thermal gradients, and
extrapolation beyond the valid kinetic range. Nonetheless, the
simple reactor model successfully predicted the onset of
thermal runaway with reasonable accuracy. Although the
predicted and measured axial temperature profiles do not
match perfectly at the highest feed oxygen concentrations
(Figure 2b), this deviation arises primarily because methanol
conversion increases substantially as the system approaches the
critical boundary, whereas the kinetic parameters were
determined under strictly differential conditions with con-
version below 10%. The pseudohomogeneous model therefore
remains essentially valid in the prerunaway regime for which it
was designed, where both temperature gradients and
conversions remain small and intrinsic kinetics are directly
applicable. Even with these expected deviations near the
critical point, the model accurately identifies the onset of
thermal runaway, as evidenced by the close agreement between
the experimentally observed and model-predicted critical inlet
temperature and oxygen concentration. This confirms that the
pseudohomogeneous formulation is sufficiently reliable for
mapping the runaway boundary, which is the central objective
of the mechanistic component of this study.

Normal hotspot formation in selective methanol oxidation
produces bounded, convex axial temperature profiles asso-

ciated with controlled conversion increases, whereas con-
ditions near the instability boundary display a rapid transition
toward concave, accelerating temperature behavior; because
only this onset regime is experimentally accessible under safety
constraints, the sensitivity-based AE and HP criteria provide an
appropriate and practical means of identifying the loss of
stability. The predictive capability of the model was further
assessed using sensitivity analysis of T, with respect to feed
temperature (T,) and oxygen concentration (Pol). Figure 2c

shows that S(T,,..; To) remained close to zero for T, < 403 K,
but rose sharply when T, reached its critical value (403.4 K),
coinciding with the experimentally observed runaway threshold
(403 K). A similar result was obtained for oxygen
concentration (Figure 2d), where sensitivity increased abruptly

at a critical Py, of 4.9%, in close agreement with the

experimental observation of 5%. Across all operating
conditions in Figure 2a and 2b, the mean absolute deviation
between the measured and modeled temperatures is 2—4 K,
with maximum deviations below 6 K near the critical
boundary, demonstrating that the model describes the axial
thermal behavior with good accuracy up to the onset of
runaway. These results demonstrate that the combination of
detailed kinetic modeling and sensitivity analysis not only
reproduces stable reactor performance, but also accurately
identifies the critical conditions for the onset of thermal
runaway. We note that discrepancies between model
predictions and experimental temperature profiles may partly
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Figure 4. Classification results for predicting thermal runaway onset using Logistic Regression (LR), Random Forest (RF), and Support Vector
Classification (SVC). (a) Mean accuracies for the acetic anhydride hydrolysis batch reactor: LR (98.81%), RF (99.37%), SVC (96.88%). (b) Mean
miss rates for the batch reactor: LR (0.32%), RF (1.26%), SVC (0.32%). (c) Relative importance of dimensionless parameters (7, y, B) derived
from the Random Forest algorithm for the batch reactor. (d) Mean accuracies for the methanol oxidation packed-bed reactor (PBR): LR (96.77%),
RF (98.23%), SVC (96.68%). (e) Mean miss rates for the PBR: LR (11.33%), RF (0.1053%), SVC (11.33%). (f) Relative importance of
dimensionless parameters (y, B, Da, St) derived from the Random Forest algorithm for the PBR.

arise from uncertainties in the effective heat-transfer
description. Because detailed heat-transfer coefficients and
temperature-dependent transport properties were not inde-
pendently measured in this study, the model is intended to
capture trends and runaway proximity rather than exact local
temperature magnitudes.

3.2. Mechanistic Sensitivity and Parametric Analysis of
Catalyst Design

In addition to feed conditions, catalyst composition strongly
influences reactor thermal stability. To investigate this effect,
three representative catalysts—1%Pt, 1%Pt—0.2%Bi, and the
optimal 1%Pt—0.5%Bi—were evaluated. The kinetic parame-
ters for these catalysts (Table S2) revealed distinct behaviors.
For the 1%Pt catalyst, step R; (CO, formation) dominated due
to its relatively low activation energy (26.7 kJ/mol), whereas
all other steps exhibited much higher barriers (142—186 kJ/
mol). For the 1%Pt—0.2%Bi catalyst, both R; (formaldehyde
formation) and Ry were favored at lower temperatures, while
the other three steps became relevant only at higher
temperatures. In contrast, the balanced Pt—Bi composition in
the 19%Pt—0.5%Bi catalyst promoted steady thermal perform-
ance by distributing activity more evenly across reaction
pathways. Figure 3a—b compares axial temperature profiles at
feed temperatures of 343 and 373 K. At 343 K, all three
catalysts showed relatively steady behavior, though a minor hot
spot appeared for the 1%Pt catalyst due to strong CO,
formation. At 373 K, the difference between catalysts became
more evident: the 1%Pt—0.2%Bi catalyst exhibited incipient
runaway, the 1%Pt catalyst showed a more pronounced hot
spot, while the 19%Pt—0.5%Bi catalyst remained stable. When
feed temperature increased further (not shown in Figure 3),
both 1%Pt and 1%Pt—0.2%Bi catalysts underwent runaway at

393 K, whereas the 1%Pt—0.5%Bi catalyst maintained steady
performance until 403 K, beyond which runaway was
unavoidable for all compositions. A similar trend was observed
for oxygen concentration (Figure 3c—d). At 1.5% O,, all three
catalysts operated steadily without hot-spot formation. At 3%
O,, however, the 1%Pt and 1%Pt—0.2%Bi catalysts exhibited
rapid runaway with reactor temperatures exceeding 550 K,
while the 1%Pt—0.5%Bi catalyst showed a delayed and less
severe thermal response. These results highlight that the
addition of Bi suppresses the highly exothermic CO, pathway,
thereby reducing thermal instability and extending the safe
operating window. In summary, Figure 3 demonstrates that
careful tuning of Bi promoter content is essential. While
excessive Bi lowers catalytic activity, moderate Bi loading
(0.5%) provides a balance between high formaldehyde
selectivity and stable thermal performance, thereby minimizing
the risk of thermal runaway under both temperature and
oxygen perturbations. These catalyst-comparison results
establish that the mechanistic trends embedded in the reaction
network—and therefore in the synthetic ML data sets—are
experimentally consistent across several Pt—Bi compositions.

3.3. Machine-Learning Classification of Runaway Onset

The generated data sets include 53.48% runaway cases for the
batch reactor and 31.33% for the packed-bed reactor. The
generated data sets were constructed to match the proportions
observed in the experimental test sets (50% for the batch
reactor, 28% for the PBR) through stratified sampling. This
ensured that the ML models learned from realistic class
distributions, avoiding artificial balancing biases and improving
generalizability. Predicting the onset of thermal runaway was
formulated as a classification problem. Three algorithms were
applied: Logistic Regression (LR), Random Forest (RF), and
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Support Vector Classification (SVC). The features consisted of
the dimensionless parameter set [y, y, B, Da, St], and the
output variable was R. Hyperparameters were tuned by
random search, while Figure 4(a, c) shows the mean accuracies
for the batch reactor and the PBR, respectively, while Figure
4(b, d) shows the corresponding miss rates. Performance of
training and 3-fold cross-validation is summarized in Tables
§9—S§10. For the acetic anhydride batch reactor, all three
algorithms achieved near-perfect test accuracy (LR: 98.81%,
RF: 99.37%, SVC: 96.88%). For the methanol oxidation PBR,
accuracy was slightly lower but remained above 95% (LR:
96.77%, RF: 98.23%, SVC: 96.68%). Since accuracy alone does
not capture the safety implications of misclassification, the miss
rate (false negative rate) was used as a critical metric. From a
process safety perspective, false positives (predicting runaway
when safe) are acceptable, but false negatives (predicting safe
when runaway) can be catastrophic. RF consistently achieved
the lowest miss rates for PBR (0.1053%), compared to LR and
SVC (11.33%), while maintaining comparable low miss rates
for Batch (RF = 1.26%, LR = 0.32%, and SVC = 0.32%). The
consistently high accuracy and low miss rate for the batch
reactor are attributed to its mechanistic simplicity, involving
only a single reaction pathway. In contrast, the methanol
oxidation PBR is more complex, with five parallel reactions and
normalization parameters, which increases variance and
reduces predictive accuracy. Overall, the Random Forest
algorithm emerged as the most reliable classification model
for predicting the onset of thermal runaway in both the batch
and fixed-bed systems studied here. In addition to classification
performance, Random Forest analysis provided insights into
the relative importance of input parameters (Figure 4e—f). For
the batch reactor, the Semenov number y is the most
influential feature, followed by the dimensionless heat of
reaction B and the activation-energy parameter y. For the
packed-bed reactor, the dimensionless heat of reaction B
dominates the feature importance, with Da and St contributing
to a lesser extent and y having minimal influence. In this
packed-bed system, the dominance of the dimensionless heat
of reaction B arises because runaway behavior is driven mainly
by the magnitude of heat release associated with deep
oxidation pathways, whereas the external heat-transfer
resistance is not rate-limiting under the operating conditions
considered; as a result, B outweighs Da and St in determining
the proximity to runaway. These results demonstrate that the
ML framework not only predicts runaway onset with high
reliability, but also yields interpretable parameter importance
consistent with mechanistic understanding. Once the ML
models are trained, they can be deployed in industrial reactor
systems as a real-time safety and decision-support tool. By
continuously evaluating the relevant dimensionless inputs and
updating the ML-informed criticality metric #, operators can
rapidly determine whether current operating conditions fall
within a safe region, a high-risk transitional zone, or are
approaching the onset of runaway. Such rapid assessment is
particularly important in time-sensitive scenarios, where
unexpected temperature excursions may require immediate
intervention and where classical mechanistic calculations may
be too slow for operational use. The proposed framework
therefore has the potential to complement existing monitoring
and control systems and to enhance thermal-safety manage-
ment at industrial scale. Because the feature-importance
patterns arise primarily from the numerical ranges of the
sampled dimensionless parameters, the weighting factors are

transferable to other strongly exothermic reaction systems
whose dim ensionless groups fall within similar ranges; only
the kinetic normalization used in constructing the y term is
reaction-specific and must be recalculated once for a new
chemistry.

3.4. Machine-Learning Prediction of Runaway Intensity

While classification models predict whether a reactor will
undergo runaway, they cannot quantify how close a system is
to instability. To address this gap, we propose a machine-
learning-based criterion, #, which measures the extent of
criticality and thereby quantifies thermal runaway intensity.
Building on the equal-weighted definition of #’ from Section
2.4, the ML-based criterion # incorporates feature importance
values w; derived from the Random Forest algorithm:

P.
n= 2w 2=l
=

A (29)

Here, P; are the dimensionless parameters (y, , B for batch
reactors; ¥, B, Da, St for PBRs), and P; are their corresponding

critical values calculated from classical criteria. By construction,
n =1 at the runaway boundary, 7 < 1 for stable operation, and
17 > 1 for runaway conditions. The feature weights @, ensure
that dominant parameters, such as St and Da in PBRs or y and
B in batch reactors (Figure 4e—f), contribute proportionally to
the criticality measure. Unlike classical single-reaction stability
criteria such as the Semenov parameters, which assume that
thermal runaway is driven by a single dominant exothermic
pathway, the metric # incorporates reaction-weighting factors
that reflect the contributions of all five parallel oxidation routes
in the mechanistic model. As a result, 7 captures pathway
switching and multipathway coupling near the runaway
boundary, effects that classical criteria do not represent.
Once trained, # provides a continuous and directly computable
indicator of proximity to runaway using only the dimensionless
inputs, and the associated feature-importance values offer a
transparent interpretation of which dimensionless groups exert
the strongest influence on instability. The regression perform-
ance of the ML-based 1 was benchmarked against values from
mechanistic models. Figure 5 shows that the RF regression
model predicts 7 with excellent agreement, capturing both safe
and runaway regions as well as the transitions between them.
This confirms that # provides a robust and interpretable
measure of thermal runaway intensity. Beyond prediction,
offers several practical applications. First, it enables recognition
of reactors that are highly risky but not yet explosive. For
example, a system with 7 = 0.99 would be labeled “safe” by a
classification model, yet its proximity to the boundary indicates
a high likelihood of runaway under small perturbations.
Second, # introduces an economic dimension to reactor
operation. Extremely low 7 values (e.g., 0.05) guarantee safety
but incur high cooling costs, while moderate # values (e.g., 0.2)
balance safety and efficiency. Finally, # can serve as a real-time
monitoring signal: when # approaches 0.9, the control system
can trigger alarms and corrective actions before reaching
runaway conditions. Because # is defined as a continuous
measure of proximity to the mechanistic runaway boundary,
we classified operating conditions by mapping # onto a graded
risk scale. Specifically, 7 = 1 corresponds exactly to the onset of
runaway determined by the AE or HP criterion, values of > 1
denote supercritical (runaway) conditions, and values of 7 < 1
represent subcriticaloperation. Intermediate thresholds were
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Figure S. Prediction of thermal runaway intensity using the machine-
learning-based criterion 7. Scatter plot of n values calculated from
classical mathematical models versus those predicted by the Random
Forest (RF) regression model. Risk levels are visibly divided into four
regions: 0 < 17 < 0.4 (safe), 0.4 < 77 < 0.7 (intermediately risky), 0.7 <
7 < 1.0 (highly risky), and # > 1.0 (thermal runaway). The close
alignment of predicted and calculated values demonstrates the ability
of the RF algorithm to capture the extent of criticality with high
fidelity.

selected based on the temperature distance from the
mechanistic runaway point (within approximately 2 K for the
high-risk region) to provide a practical, interpretable risk
classification for operators. These thresholds are adjustable and
serveas an initial mapping of the continuous # metric to
discrete risk categories. Note that machine learning in this
work is not intended to replace mechanistic modeling; rather,
it accelerates prediction once a validated kinetics—transport
framework is established. ML classifiers inherit the underlying
physics through AE- and HP-derived labels and therefore serve
only as complementary tools for rapid screening near the
runaway boundary. In this framework, the classical runaway
criteria are used only once—during data set generation—to
compute the critical values P, that define the onset boundary.
After training, the ML model predicts # dire ctly from the
dimensionless inputs without further numerical solution of the
reactor balances; mechanistic modeling is needed only to
create the initial labeled data set for a new reaction system. In
summary, the proposed criterion # extends ML-based
classification models by providing a continuous, interpretable
measure of thermal runaway intensity. It bridges the gap
between mechanistic thresholds and operational decision-
making, offering both predictive accuracy and practical utility
for industrial reactor safety.

4. CONCLUDING REMARKS

Thermal runaway remains one of the most critical challenges in
chemical process safety, as uncontrolled temperature escalation
can lead to catastrophic reactor failure, human casualties, and
economic loss. While numerous mechanistic criteria have been
developed to predict runaway onset, they often require solving
complex systems of equations and are restricted to single-
reaction mechanisms. This creates a knowledge gap in
developing practical tools that can link experimental data,
kinetic modeling, and modern machine learning approaches

into a unified framework for predicting both the onset and
intensity of thermal runaway. In this work, we addressed this
gap through a combined experimental, modeling, and data-
driven approach. Mechanistic kinetic analysis of methanol
oxidation over Pt—Bi catalysts validated the reactor model and
identified key reaction steps, with R; (formaldehyde
formation) and Ry (CO, formation) dominating temperature
sensitivity. Reactor-scale simulations showed that feed temper-
ature and oxygen concentration strongly control thermal
stability, with the simple pseudohomogeneous model success-
fully predicting the onset of runaway. The influence of catalyst
design was also examined, demonstrating that moderate Bi
promotion (0.5% Bi) balances activity and selectivity while
suppressing runaway, whereas excessive or insufficient Bi
loading destabilizes reactor performance. Machine learning was
then employed to complement mechanistic models. Classi-
fication algorithms were trained to predict runaway onset (R =
0/1) using dimensionless reactor parameters. All models
achieved high accuracy, with Random Forest (RF) delivering
the lowest miss rates, a critical factor for avoiding false
negatives that could misclassify runaway as safe operation. We
further proposed a new ML-based criterion, 7, to quantify the
intensity of thermal runaway. RF regression predicted 1 with
high fidelity against mechanistic models, and # divided reactor
states into safe, intermediate, highly risky, and runaway
regions, providing a continuous and interpretable measure of
criticality. These results establish a pragmatic framework that
unifies mechanistic insight with machine learning prediction.
Beyond advancing predictive capabilities, the ML-based
criterion # introduces a practical dimension to reactor safety
management: balancing safety margins, economic cost, and
real-time monitoring. Looking forward, this framework can be
extended to more complex systems, including multiscale
reactor networks, additional catalyst architectures, and
dynamic operational disturbances. Such integration holds
promise for developing adaptive digital twins for chemical
reactors, demonstrated here on batch and fixed-bed reactors,
and formulated to be capable of forecasting and preventing
thermal runaway in industrial practice.
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B NOMENCLATURE

A, m* Heat exchange surface area on the bed side

A kmol - kg™ - s™' - atm™"e)7"> Pre-exponential
factor of step i when the reaction order is n;

A, m®> Log-mean of A, and A,

A, m® Heat exchange surface area on the heat-transfer

medium side
B - Dimensionless heat of reaction

B, - Contribution of reaction step n to B

Cy;-Cs; K] - kmol™ - K DIPPR parameters

Cej - C;; K DIPPR parameters

C kmol - m~> Inlet concentration of limiting reactant
¢ kJ - kmol™ - K! Heat capacity of mixture

¢, kJ - kmol™ - K~' Heat capacity of species j

D, - Dimensionless geometric parameter

Dy m® - 57! Effective diffusion coefficient

D; m Reactor inner diameter
D, m Reactor outer diameter
d m Thickness of reactor wall
d, m Catalyst particle diameter
d, m Internal reactor diameter
Da - Damkohler Number
E, kJ - kmol™" Activation energy (scalar)
E, kJ - kmol™" Activation energy of step R,
F kmol - 57! Total flow rate
F, kmol - s! Feed flow rate
F; kmol - 57" Flow rate of species j
k; kmol - kg~ - s7' - atm "™ Reaction rate
constant of step i
k, kmol - kg.,,”" - s7' Rate constant of reaction step n
nG)) - Reaction order for species j in R;
u; - Nusselt number for bed-side heat transfer
P, atm Feed pressure
P, atm Inlet partial pressure of limiting reactant
P, atm Partial pressure of species j
P - Critical value of dimensionless group P;
Py atm Total pressure
Pr - Prandtl number of gas mixture
¢ - Generic model parameter in sensitivity analyses
r kmol - kg, " - s Reaction rate of step R,
fi kmol - kg, ' - s Reaction rate of step R,
Re - Reynolds number based on D
R - runaway indicator

R kJ - kmol™ - K' Gas constant = 8.314

s{me; @) - Sensitivity of T,,,, with respect to ¢

S(Tpax; @) - Normalized sensitivity of T, wrt ¢
m~" Heat-transfer area per reactor volume

v
St - Stanton Number
St, - Critical Stanton number
St, - Contribution of step n to St
T K Reaction temperature
T, K Feed temperature
T, K Coolant temperature

T; K Reference temperature for nondimensionaliza-
tion

T K Maximum temperature

U k] - m™* - K' 57! Overall heat transfer coefficient

w kg Amount of packed catalyst

Greek Letters:

a kJ - m™> - K s! Bed-side heat transfer coeflicient

a, kJ-m?-K's! Medium-side heat transfer coefficient
) - Stoichiometric coefficient for species j in R;

AH,; kJ - kmol™" Enthalpy change of reaction i

n - ML-based criticality metric

4 - Dimensionless activation energy

A k] - m™" - K™' 57! Thermal conductivity of reactor wall
A W - m™' - K' Thermal conductivity of reactant gas

! mixture
Ay W -m™' - K' Thermal conductivity of air
74 - Heat-generation sensitivity parameter

Y - Semenov number

Pt kg - m™> Packed catalyst density

- Kinetic weighting factor of step n
0 - Dimensionless temperature

- Dimensionless ambient temperature
- Dimensionless coolant temperature
wp - Feature-importance weight for B
@®p, - Feature-importance weight for Da
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@, - Feature-importance weight for y

®; - ML feature-importance weight

@p - Weight of parameter P; in definition of #
P, g j
@ - Weight associated with % term
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