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CATALYTIC DEOXYGENATION OF made to the embodiments illustrated in the drawings , and 
BIO - OILS USING METHANE specific language will be used to describe the same . It will 

nevertheless be understood that no limitation of the scope of 
CROSS - REFERENCE TO RELATED this disclosure is thereby intended . 

APPLICATIONS 5 Hydrodeoxygenation ( HDO ) is a promising strategy to 
overcome problems associated with biomass to biofuel The present U . S . patent application is related to and conversion . Since bio - oil is a complex mixture , of generally claims the priority benefit of U . S . Provisional Patent Appli more than 400 chemical species , a model compound is cation Ser . No . 62 / 199 , 268 , filed Jul . 31 , 2015 , the contents typically used to obtain insight into the HDO process . of which is hereby incorporated by reference in its entirety Guaiacol is one such representative compound owing to its into this disclosure . two common oxygenated groups : hydroxyl and methoxyl . 

TECHNICAL FIELD Extensive research has been conducted in this field . It should 
therefore be appreciated that while guaiacol is the model 

The present disclosure generally relates to conversion of compound used to demonstrate the methods disclosed 
biomass to sustainable fuels and chemicals , and in particular 15 ar 15 herein , such use is not intended to be limiting and rather , 
to a method for catalytic deoxygenation of bio - oils using other biomass compounds can be used . In general , Group 

VIII metals ( Pt , Pd , Ni , Rh , Ru , and so on ) are used to methane as a reductant . activate guaiacol and to facilitate hydrogen donation , while 
BACKGROUND A103 , ZrO2 , SiO , and activated carbon are considered to be 

20 effective supports . 
This section introduces aspects that may help facilitate a atea Although the use of hydrogen for deoxygenation Although the use of hydrogen for deoxygenation of 

better understanding of the disclosure . Accordingly , these guaiacol is advantageous because it generates clean products 
statements are to be read in this light and are not to be ( mainly water ) , it often carries high economic penalties 
understood as admissions about what is or is not prior art . arising from its production and transportation . In this con 
Owing to scarcity of known reserves as well as environ - 25 text , methane , as the main component in natural gas 

mental concerns , increased attention is being paid to devel ( CH4 > 95 % ) and major component of shale gas ( typically 
oping new fossil or renewable resources , such as shale CH4 > 70 % ) , is attractive as an alternative to H , since it can 
oil / gas , tar sands and biomass . In particular , biomass has serve as a hydrogen donor by releasing hydrogen at high 
been shown to be an important renewable source , which can temperature on noble metal surfaces , which makes it a 
be converted into both sustainable fuels and chemicals . 30 potential promising reductant . 
Among various techniques for biomass conversion , fast To facilitate understanding of the methods disclosed 
pyrolysis is attractive for bio - oil production , which can herein , with Pt / C as catalyst , a guaiacol deoxygenation 
subsequently be upgraded to alternative liquid fuels or process using H , is presented herein . Based on kinetics and 
converted into chemicals . The high oxygen content of bio catalyst characterization , deactivation mechanism and reac 
oils , however , remains a major challenge , since it decreases 35 tion pathways are also proposed . To overcome the high cost 
stability , combustion performance and heating value of of H2 , methane is used in the present disclosure to deoxy 
fuels . There is therefore an unmet need for alternate methods genate guaiacol . 

for biomass conversion . Results and Discussion : 
In preliminary work with Pt / C catalyst , the use of CH4 

SUMMARY 40 was shown to be successful for guaiacol deoxygenation , but 
significant catalyst deactivation was observed . This obser 

In at least one aspect , a method for deoxygenating a vation is similar to other works for CH4 reactions and is 
bio - oil is presented . The method can include using methane related to coking / carbon deposition . The deactivation issue 
and a catalyst to deoxygenate the bio - oil . has been addressed for other reactions by use of bimetallic 

45 catalysts , containing a primary metal and a promoter . Thus , 
BRIEF DESCRIPTION OF THE FIGURES in the present disclosure , a guaiacol deoxygenation process 

using methane is developed via Pt - Bi catalyst . 
FIG . 1a is a plot of catalyst performance , specifically a Four cases ( PtH2 , PtCH4 , PtBiH , and PtBiCH4 ) , derived 

Van Krevelen diagram at 60 min time on stream ( TOS ) . from two catalysts ( Pt / C , Pt - Bi / C ) using either H2 or CH4 
FIG . 1b is a plot showing catalyst performance , specifi - 50 as reductant , were tested for deoxygenation of guaiacol 

cally conversion vs . TOS . under standard operating conditions : 300° C . , 1 atm , 0 . 50 g 
FIGS . 2a - 2d show the distribution of major products at 60 catalyst , total gas ( reductant gas , H , or CH4 : N2 = 1 : 1 ) flow 

min TOS . FIG . 2a corresponds to PtH , FIG . 2b corresponds rate 100 mL / min , and guaiacol feed rate 0 . 025 mL / min 
to PtCH4 , FIG . 2c corresponds to PtBiH , , and FIG . 2d ( liquid , at room temperature ) , corresponding to contact time 
corresponds to PtBiCH4 55 0 . 3 g catalyst . hr / g guaiacol . A Van Krevelen diagram ( FIG . 

FIG . 3a is a plot showing effect of temperature for la ) is used to evaluate the deoxygenation levels by analyz 
Pt - Bi / C catalyst on guaiacol conversion . ing O / C and H / C molar ratios in the liquid products , which 

FIG . 3b is a plot showing the effect of temperature for compares hydrogenation vs . deoxygenation performance . 
Pt - Bi / C catalyst and carbon recovery in liquid and gaseous Owing to catalyst deactivation , data taken at 60 min time on 
products . 60 stream ( TOS ) is reported in FIG . 1a . It shows that guaiacol 

FIG . 4 is a plot showing the kinetic behavior of Pt - Bi has H / C of 1 . 14 and O / C of 0 . 28 , implying a high O content . 
catalyst at 400° C . The H / C ratios increase to 1 . 18 - 1 . 20 and O / C ratios decrease 

to 0 . 21 - 0 . 22 for all the four cases after deoxygenation , 
DETAILED DESCRIPTION indicating that both hydrogenation and deoxygenation occur . 

65 It clearly shows that all four cases behave similarly in the 
For the purposes of promoting an understanding of the early stages of TOS , although the initial conversions of 

principles of the present disclosure , reference will now be guaiacol vary from 79 % - 90 % ( FIG . 1b ) . The high yield and 

of 
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good stability of PtH , case have been reported . Since CH4 as shown in FIG . 36 . Two major factors are considered to 
decomposes on Pt surface donating hydrogen , the PICH affect carbon recovery in the liquid phase : guaiacol conver 
case has a high initial guaiacol conversion . In fact , H , is s ion ( to the three main liquid products ) and other reactions 
detected in the gaseous products . As shown in FIG . 16 , with that decompose guaiacol to produce gaseous products , 
increasing TOS , however , the PtCH4 case exhibits sharp 5 which occur on carbon - supported noble metal catalysts . 
deactivation , while the other three cases maintain good Along with temperature increase , carbon recovery in liquid 
stability . As noted above , a possible reason for rapid deac product first increased and then decreased after 400° C . , tivation in the PICH4 case is carbon deposit and / or coking , while carbon recovery in gaseous products shows the oppo resulting from CH , decomposition . site trend . From the present work , 400° C . can be considered In the PtBiH , case of FIG . 16 , good stability is obtained 10 as the optimal temperature accounting for trade - off between although the conversion is decreased by - 10 % , as compared guaiacol conversion and carbon recovery in liquid products . to the PtH , case . Remarkably , PtBiCH , also shows good The kinetic behavior of Pt - Bi catalyst at 400° C . was catalyst stability , although the conversion is decreased fur studied by varying feed rates of guaiacol and CH , under ther . For a C , hydrocarbon reforming process using catalyst 
containing a Group VIII metal and low amounts of bismuth , 15 otherwise standard conditions . The data for each contact 
a patent disclosed that addition of bismuth extended catalyst time , taken at 60 min TOS , is shown in FIG . 4 . It illustrates 
lifetime . In fact , this is the only prior work demonstrating that phenol , as the main product , rises with contact time 
catalyst stability using Bi as a promotor for gas - phase increase , while the other two products remain essentially 
reactions at high temperature ( > 300° C . ) . Although the unchanged . As compared to the PtH2 case ( FIGS . 1a and 1b ; 
mechanism is unclear , our experiments also show that Bi 20 300° C . , 0 . 3 g catalyst . hr / g guaiacol ) , the results of FIGS . 
promotor extends catalyst lifetime . It should also be noted 3a , 3b and 4 demonstrate that equivalent guaiacol conver 
that in a patent application , Fernando et al . describe the use sion can be achieved for the case of Pt - Bi catalyst with 
of methane with an oxygenate to dehydrate and produce methane by compensating with either higher temperature or 
deoxygenated hydrocarbons , but no bimetallic catalysts or longer contact time ( > 0 . 5 g catalyst . hr / g guaiacol ) . 
data for catalyst stability were reported . 25 In the present work , CH , is used as novel reductant to 

FIGS . 2a - 2d show distribution of major components in deoxygenate guaiacol , a model compound of pyrolysis bio 
both gaseous and liquid products at 60 min TOS under oils . With the Pt / C catalyst , CH , exhibits as good deoxy 
standard conditions ( FIG . 2a corresponds to PtH2 , FIG . 2b genation performance as H , with respect to guaiacol con 
corresponds to PtCH4 , FIG . 2c corresponds to PtBiH , and version and product distribution . The lifetime of Pt / C 
FIG . 2d corresponds to PtBiCH ) . Note that components less 30 catalyst , however , was low ( < 3 hrs ) . With addition of 
than 2 wt % are neglected and all compositions are normal bismuth as promoter , the lifetime of Pt - Bi / C is extended 
ized with respect to the remaining components . Only three ( no significant deactivation in 5 hrs ) , although catalyst 
main products ( phenol , catechol and cyclopentanone , total performance decreases somewhat , which could be compen 
content > 95 wt % for all four cases ) in the liquid are shown . sated by either higher reaction temperature or longer contact 
For liquid products , all four cases have similar distributions 35 time . The current work provides a new approach for bio - oil 
and compositions . For gaseous products , the PtH , and upgrading using methane as reductant instead of hydrogen . 
PtBiH , cases generated CO and CH4 , while PtCH4 and Those skilled in the art will recognize that numerous 
PtBiCH , produced CO and C H , instead . Since our work modifications can be made to the specific implementations 
using Pt and H , suggested that CO and CH4 are generated described above . The implementations should not be limited 
along with cyclopentanone , we can conclude that C , H , is 40 to the particular limitations described . Other implementa 
generated by the use of CH4 . Thus , a conceptual scheme is tions may be possible . 
presented for comparison of H , and CH4 deoxygenation 
processes . REFERENCES 

For hydrogen deoxygenation : R2O + 2H2 > 2RH + H2O 45 
For methane deoxygenation : R2O + 4CH4 > 2RH + 

2C2H6 + H2O 
It is disclosed that CH _ decomposes on Pt surface and 

contributes one H atom for guaiacol deoxygenation and 50 
water formation , similar to the H , process , while the residual 
methyl combines with another methyl to form ethane . This 
assumption is supported by the low reaction barrier of CH 
decomposition at elevated temperature , along with detected 
H , and C2H , molecules in our experiments . 55 

To further understand Pt - Bi performance for guaiacol 
deoxygenation using CH4 as reductant , different tempera 
tures ( 300 - 450° C . ) were investigated for guaiacol conver 
sion and carbon recovery in liquid and gaseous products , as 
shown in FIGS . 3a - 3b . FIG . 3a shows increase of guaiacol 60 
conversion with temperature , where conversions > 90 % are 
reached for 400 - 450° C . Remarkably , as shown in FIGS . la 
and 1b , such conversion is obtained at 300° C . when Pt and 
H , are used . Therefore , reaction rate is decreased by either 
using CH4 as reductant or Pt - Bi as catalyst . Besides 65 
guaiacol conversion , carbon recovery in the liquid phase is 
another important factor to assess the catalyst performance , 
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